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Preface

This note was created to introduce the basics of mean-field theory and density functional theory.
Although it was primarily prepared for students conducting their graduation research in the Sato
Group at the Department of Physics, Graduate School of Science, Tohoku University, I hope it
will be useful for anyone interested in quantum many-body problems. Using atoms as examples
of many-electron systems, this note reviews perturbation theory and the variational method while
explaining the foundations of quantum many-body theory for fermionic systems. Additionally,
through the development of computational codes to investigate the ground states of quantum
systems such as the hydrogen atom, helium atom, and heavier atoms, this note aims to deepen
understanding of each theory and provide opportunities to review and practice fundamental skills
in numerical computation and programming used in actual research. The content is designed to
be accessible to those with basic knowledge of quantum mechanics, numerical computation, and
programming.

Please note that the content covered in this note is limited to the very basics of quantum
many-body theory and is not sufficient in scope or depth for conducting research at the graduate
level or beyond. For those interested in research beyond the graduate level, it is recommended to
study reputable textbooks and academic papers in detail.

This note is also a draft version and is subject to ongoing updates. Please refer to the latest
version of the note at the URL below.

https://shunsuke-sato.github.io/page/etc/lecture_notes/LectureNoteForAtomDFT_en.

pdf
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1 Introduction: Atomic ground state energy and ionization
potential

In this note, as an introduction to the quantum many-body problem, we address the ground state
of atoms and explain several approximation methods and numerical analysis techniques. An atom
is a quantum many-body system in which negatively charged electrons are bound to a positively
charged nucleus. To rigorously consider the ground state of an atom, one must account not only
for the motion of the electrons within the atom but also for the motion of the nucleus. However, in
this note, the nucleus is treated as a fixed point charge located at a point in space. This treatment
is justified by the fact that the mass of the nucleus is sufficiently larger than that of the electrons.
Under this approximation, the problem of determining the ground state of an atom reduces to the
problem of determining the ground state of a multi-electron system under the potential created
by a point charge. Therefore, the quantum many-body system treated in this note is a quantum
many-body system of electrons, which are fermions.

Before investigating the ground state of atoms, let us reconsider the energy of the atomic
ground state. Consider the Hamiltonian of an atom given as follows:

H =

N∑
j

[
p2
j

2me
− Ze2

4πε0

1

rj

]
+
∑
j>i

e2

4πε0

1

|rj − ri|
, (1)

where N is the number of electrons, rj is the position, pj is the momentum of the electron, and
Z represents the atomic number of the nucleus. Let us denote the ground state energy of this
Hamiltonian as Egs(Z,N). In particular, for a neutral atom, we have N = Z.

Let us consider removing one electron from the ground state of a neutral atom with atomic
number Z. After removing one electron, the original atom separates into two subsystems: a
singly charged ion of the original atom and a single electron. If this operation is performed with
the minimum necessary energy, each subsystem should attain its minimum possible energy. The
minimum energy of the singly charged ion is the ground state energy of that electron many-body
system, which can be expressed as Egs(Z,Z − 1) using the notation introduced earlier. The
minimum energy of the separated electron is zero. Therefore, the minimum energy required to
remove one electron from a neutral atom of atomic number Z is given by

IP1st = Egs(Z,Z − 1)− Egs(Z,Z). (2)

At this point, IP1st is called the first ionization potential.
Similarly, the minimum energy required to further remove an electron from a singly charged

ion is called the second ionization potential, and it is given by

IP2nd = Egs(Z,Z − 2)− Egs(Z,Z − 1). (3)

In general, the minimum energy required to remove an electron from an (N − 1)-times charged
ion is called the Nth ionization potential, and it is given by

IPNth = Egs(Z,Z −N)− Egs(Z,Z −N + 1). (4)

Next, let us consider the process of removing electrons one by one from a neutral atom with
atomic number Z, until all the electrons and the nucleus are separated. If a charge-neutral atom
is decomposed into electrons and a bare nucleus with the minimum required energy, then the
energy of each subsystem after the decomposition becomes zero, and the total energy of the whole
system becomes zero. Corresponding to this operation, by considering the sum of the ionization
potentials from the first to the Zth, we find the following relation:

IP1st + IP2nd + · · ·+ IPZth =(Egs(Z,Z − 1)− Egs(Z,Z))

+ (Egs(Z,Z − 2)− Egs(Z,Z − 1)) + · · ·
+ (0− Egs(Z, 1))

=− Egs(Z,Z). (5)
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Therefore, it is found that the sum of the ionization potentials from the first to the Zth is
equal to the negative of the ground state energy of the neutral atom. In this way, the ground
state energy of an atom can be experimentally determined by measuring its ionization potentials.
Furthermore, from the above discussion, the negative of the ground state energy is equal to the
minimum energy required to decompose the atom into electrons and nucleus, and is sometimes
referred to as the binding energy.

In this note, we will investigate the ground state energy of electronic many-body systems in the
situation where the nucleus with atomic number Z is fixed at the origin. As an advanced form of
such a problem, the analysis of determining the ground state of an electronic many-body system
under a given nuclear configuration, such as in molecules and solids, is one of the fundamental
analytical methods for investigating the properties of matter around us and remains a highly
important problem in the fields of condensed matter physics and quantum chemistry. Although
this note mainly deals with electronic many-body systems, the methods explained here are also
important in nuclear physics, which studies the motion of nucleons (protons and neutrons) within
nuclei, where the spatial, temporal, and energy scales are vastly different.
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2 Hydrogen atom

2.1 Analytical solution of hydrogen-like atoms

Before looking into the many-body problem, let us first review the Schrödinger equation for the
one-body problem of hydrogen-like atoms1. Consider a system where a nucleus with atomic number
Z is fixed at the origin, and a single electron moves around it. The Hamiltonian of this system is
given by:

H =
p2

2me
− e2

4πε0

Z

r
. (6)

The Schrödinger equation in coordinate representation corresponding to this Hamiltonian is[
− h̄2

2me
∇2 − e2

4πε0

Z

r

]
ψ(r) = Eψ(r). (7)

By expressing this Schrödinger equation in spherical coordinates, we obtain the following equa-
tion: [

− h̄2

2me

{
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

}
− Ze2

4πε0

1

r

]
ψ(r, θ, ϕ)

=

[
− h̄2

2me

{
1

r2
∂

∂r

(
r2
∂

∂r

)}
+

L2

2me
− Ze2

4πε0

1

r

]
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ). (8)

Here, the angular momentum operator L and its square are given by:

L = r × p, (9)

L2 = L ·L = −h̄2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
. (10)

The spherical harmonics, Ylm(θ, ϕ), are eigenfunctions of L2 and satisfy the following equation:

L2Ylm(θ, ϕ) = h̄2l(l + 1)Ylm(θ, ϕ). (11)

Here, l is the azimuthal quantum number and is a non-negative integer.
Considering the separation of variables using the spherical harmonics Ylm(θ, ϕ),

ψ(r, θ, ϕ) =
χl(r)

r
Ylm(θ, ϕ). (12)

Then, we find that the radial wave function χl(r) satisfies the following equation:[
− h̄2

2me

d2

dr2
+
h̄2l(l + 1)

2me

1

r2
− Ze2

4πε0

1

r

]
χl(r) = Eχl(r). (13)

Furthermore, the radial wave function χl(r) satisfies the following boundary conditions:

lim
r→0

χl(r) = lim
r→∞

χl(r) = 0. (14)

Eq. (13) for hydrogen-like atoms can be solved analytically. For example, the wave function of
the ground state 1s orbital of a hydrogen-like atom can be written as

ϕ1s(r) =

√
Z3

a30
· 2e−Zr/a0

1√
4π
. (15)

Here, a0 is the Bohr radius defined by

a0 =
4πε0
e2

h̄2

me
. (16)

1This problem is explained in detail in standard quantum mechanics textbooks.
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2.2 Numerical calculation of hydrogen-like atoms

Before investigating the ground state of atoms as quantum many-body systems, we will explain how
to numerically solve the problem of hydrogen-like atoms as a one-body problem. The numerical
methods discussed here are also used in the study of helium atoms and heavier atoms.

2.2.1 Non-dimensionalization of the equation and atomic units

Before proceeding to the actual numerical calculations, we derive a form of the equation suit-
able for numerical computations that does not explicitly include physical constants by non-
dimensionalizing the equation to be solved. For this purpose, consider the following variable
transformation applied to the Schrödinger equation for the hydrogen atom [Eq. (7)].

r =

xy
z

 = a0

ξη
ζ

 = a0s. (17)

Here, a0 is a quantity with the dimension of length, and its magnitude will be determined later.
Also, s is a dimensionless quantity. For convenience later, we define the gradient and Laplacian
with respect to the vector variable s as follows.

∇s =


∂
∂ξ
∂
∂η
∂
∂ζ

 , (18)

∇2
s =

∂2

∂ξ2
+

∂2

∂η2
+

∂2

∂ζ2
. (19)

By performing this type of variable transformation, the Schrödinger equation can be rewritten
as follows: [

− h̄2

2me

1

a20
∇2

s −
Ze2

4πε0

1

a0 |s|

]
ψ(s) = Eψ(s). (20)

Furthermore, by dividing both sides by h̄2/mea
2
0, we obtain the following equation:[

−1

2
∇2

s −
Ze2

4πε0

a0me

h̄2
1

|s|

]
ψ(s) =

mea
2
0

h̄2
Eψ(s). (21)

Let us define a0 as

a0 =
4πε0
e2

h̄2

me
, (22)

and furthermore, let us introduce a dimensionless quantity ε as follows:

E =
h̄2

mea20
ε =

me

h̄2

(
e2

4πε0

)2

ε = EHε. (23)

Here, a constant EH with the dimension of energy is introduced as follows:

EH =
h̄2

mea20
=
me

h̄2

(
e2

4πε0

)2

. (24)

By using such variables, Eq. (7) can be rewritten as follows:[
−1

2
∇2

s −
Z

|s|

]
ψ(s) = εψ(s). (25)
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Eq. (25) is a dimensionless equation that explicitly contains no physical constants, making it
convenient for creating programs to perform numerical computations.

The quantity a0 introduced through Eq. (22) during the process of nondimensionalization is
nothing but the Bohr radius defined in Eq. (16). Furthermore, by multiplying the dimensionless
eigenvalue ε by the constant EH , one can obtain the energy eigenvalues of the Schrödinger equation.
The quantity EH , which has the dimension of energy, is called the Hartree energy unit and has
a value of approximately EH ≈ 27.2114 eV. When analyzing dimensionless equations such as
Eq. (25) numerically and comparing the obtained results with experiments, it is necessary to
convert the results into quantities with dimensions and units comparable to experimental values
by multiplying them by the Bohr radius a0 or the Hartree energy unit EH .

Similar to the nondimensionalization of equations as described above, another method for
obtaining equations suitable for numerical computation that do not explicitly contain physical
constants is to adopt the atomic unit system. Specifically, a unit system is adopted in which the
magnitudes of the following physical constants are set to 1:

h̄ = 1 a.u. (26)

me = 1 a.u. (27)

e = 1 a.u. (28)

1

4πε0
= 1 a.u. (29)

Here, a.u. represents atomic units and indicates appropriate dimensional units in the atomic unit
system. For example, a length of 1 a.u. corresponds to the Bohr radius (a0 ≈ 0.529 Å). By
adopting such a unit system, equation (7) can be expressed as follows:[

−1

2
∇2 − Z

|r|

]
ψ(r) = εψ(r). (30)

Eq. (30) and Eq. (25) are equivalent except for the presence or absence of dimensions, and
many software packages adopt this notation using the atomic unit system.

Also, when the radial Schrödinger equation [Eq. (13)] is expressed using the atomic unit system,
the following equation is obtained:[

−1

2

d2

dr2
+
l(l + 1)

2

1

r2
− Z

r

]
χl(r) = Eχl(r). (31)

In the following, we will explain how to numerically solve Eq. (31) using the atomic unit system.

2.2.2 Finite difference method

To numerically solve differential equations, let us utilize the finite difference approximation of a
derivative. For a function f(x) and a small quantity ∆x, consider the following Taylor expansion:

f(x+∆x) = f(x) +
df(x)

dx
∆x+

1

2

d2f(x)

dx2
∆x2 +

1

6

d3f(x)

dx3
∆x3 +O(∆x4). (32)

Here, O(∆x4) denotes the terms of order ∆x4 and higher. From this Taylor expansion, we can
derive the following relation:

f(x+∆x)− f(x)
∆x

=
df(x)

dx
+O(∆x) (33)

From this, we can evaluate the derivative of the function f(x) using the formula on the left-hand
side, and the error is proportional to ∆x. This kind of difference formula is called the forward
difference formula.
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Using Eq. (32), we can construct the following relation:

f(x+∆x)− f(x−∆x) = 2
df(x)

dx
∆x+O(∆x3). (34)

Furthermore, by dividing both sides by 2∆x, we can derive the following finite difference approx-
imation formula:

f(x+∆x)− f(x−∆x)

2∆x
=
df(x)

dx
+O(∆x2). (35)

This type of difference formula is called the central difference formula, and its error is known to
be proportional to ∆x2.

Whereas the error in the forward difference formula of Eq. (33) is proportional to ∆x, the error
in the central difference formula of Eq. (35) is proportional to ∆x2. Hence, the error of the central
difference approximation approaches zero more rapidly in the limit as ∆x becomes smaller.

By performing a similar analysis, we can construct the following difference formula for the
second derivative:

f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
=
d2f(x)

dx2
+O(∆x2). (36)

2.2.3 Shooting Method

We will discuss how to numerically solve the radial Schrödinger equation for hydrogen-like atoms
[Eq. (31)] under the boundary conditions [Eq. (14)]. There are several numerical methods for
solving such problems, but here we will explain the numerical solution using the shooting method.
First, let us consider the discretization of the radial coordinate r with intervals of ∆r. If the origin
is taken as the 0-th point, the coordinate rj of the j-th point is given by

rj = ∆r × j. (37)

Using these discretized coordinates rj , we aim to rewrite the Schrödinger equation. Specifically,
assuming that the width ∆r is sufficiently small and using the finite difference formula of Eq. (36),
Eq. (31) can be approximated as follows:

−1

2

χ(rj+1)− 2χ(rj) + χ(rj−1)

∆r2
+

[
l(l + 1)

2

1

r2j
− Z

rj

]
χl(rj) = Eχl(rj). (38)

Furthermore, this equation can be rewritten as:

χ(rj+1) = 2χ(rj)− χ(rj−1)− 2∆r2

[
E − l(l + 1)

2

1

r2j
+
Z

rj

]
χl(rj). (39)

Here, the left-hand side represents the wave function χl(rj+1) at the (j + 1)-th point, and the
right-hand side involves only the wave functions χl(rj) and χl(rj−1) at the j-th and (j − 1)-th
points. Therefore, it can be seen that this is a recurrence formula where the wave function values
at successive points can be sequentially determined once the values at two neighboring points are
known.

From the boundary condition [Eq. (14)], the wave function must be zero at the origin. That is,
the wave function at the 0-th point (r0 = 0) must satisfy χl(r0) = 0. Moreover, since multiplying
the entire wave function by a constant does not change the represented quantum state, the value
of the wave function at the 1st point (r1 = ∆r) can be chosen arbitrarily. For computational
convenience, let us assign the values of the wave function at the 0-th and 1st points as follows:

χl(r0) = χl(0) = 0, (40)

χl(r1) = χl(∆r) = ∆r. (41)
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Once the wave function values at the 0-th and 1st points are specified, the recurrence formula
[Eq. (39)] can be used to sequentially determine the wave function values at points from the 2nd
onward.

To investigate the properties of the recurrence formula in Eq. (39), let us explicitly evaluate the
recurrence starting from the initial values given in Eq. (40) and Eq. (41). Here, we will consider
the s orbital of the hydrogen atom by setting l = 0 and Z = 1. Also, we set the step size ∆r of the
recurrence formula to 0.01 Bohr. We will evaluate the recurrence formula for four energy values
in Eq. (39): -0.503, -0.501, -0.499, -0.497 Hartree.

To assist in writing your own program, a Python code evaluating the recurrence formula in
Eq. (39) under the above settings is provided in Source Code 1.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src/shooting_

example.py

Source code 1: Code to examine the shooting method

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # Define grid
5 radius = 20.0
6 num_grid = 2000
7 dr = radius / num_grid
8

9 rj = np.linspace (0.0, radius , num_grid)
10

11 # Define energy values
12 energy = np.array ([-0.497 , -0.499, -0.501, -0.503])
13 num_energy = energy.size
14

15 # Initialize chi array
16 chi = np.zeros ((num_grid , num_energy))
17 chi[0, :] = 0.0
18 chi[1, :] = dr
19

20 # Compute wavefunction using finite difference method
21 factor = 2 * dr**2
22 for j in range(1, num_grid - 1):
23 chi[j + 1, :] = (
24 2 * chi[j, :]
25 - chi[j - 1, :]
26 - factor * (energy [:] + 1.0 / rj[j]) * chi[j, :]
27 )
28

29 # Plot results
30 plt.figure(figsize =(8, 6))
31 for i, E in enumerate(energy):
32 plt.plot(rj, chi[:, i], label=f"E={E:.3f}␣a.u.")
33

34 plt.xlim (0.0, 10.0)
35 plt.ylim(-1.5, 1.5)
36 plt.xlabel("Radius␣(Bohr)")
37 plt.ylabel(r"$\chi␣(r)$")
38 plt.title("Shooting␣Method␣Example")
39 plt.legend ()
40 plt.grid()
41 plt.tight_layout ()
42

43 # Save and show the figure
44 plt.savefig("shooting_example.pdf", dpi =300)
45 plt.show()

Figure 1 shows the wave function χl(r) obtained by explicitly evaluating the recurrence relation
of Eq. (39), using the source code 1. When the energy E is set to −0.503 or −0.501 Hartree, it
can be observed that the wave function diverges in the positive direction while remaining positive
throughout the entire investigated range. In contrast, when the energy E is set to −0.499 or
−0.497 Hartree, the wave function changes sign once and then diverges in the negative direction.
From this, it can be expected that there is a point between E = −0.499 Hartree and E =
−0.501 Hartree at which the number of sign changes in the wave function varies, and the sign of
divergence switches.

9

https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src/shooting_example.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src/shooting_example.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src/shooting_example.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src/shooting_example.py


The true eigenwave function to be found must satisfy the boundary condition [Eq. (14)], re-
quiring it to approach zero at large distances (r → ∞). From Fig. 1, it can be expected that
the energy eigenvalue E of a wave function satisfying such a boundary condition lies between
−0.499 Hartree and −0.501 Hartree. In fact, the ground state (1s state) energy the hydrogen
atom is E = −0.5 Hartree. In this way, by varying the value of the energy E and searching
for the wave function that satisfies the imposed boundary condition, the eigenvalue problem can
be solved. This method is called the shooting method. The meaning of its name should be
apparent from the process of finding the eigenvalue.

0 2 4 6 8 10
Radius (Bohr)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(r)

Shooting Method Example
E=-0.497 a.u.
E=-0.499 a.u.
E=-0.501 a.u.
E=-0.503 a.u.

Figure 1: Process of determining the eigenvalue of the hydrogen atom ground state using the
shooting method.

From here, we explain in detail how to solve the radial Schrödinger equation using the shooting
method. The exact boundary condition for the eigenvalue problem to be solved [Eq. (14)] was that
the wavefunction should vanish at infinity. However, it is not easy to handle infinity numerically.
Therefore, we replace the point at infinity with a sufficiently distant point Rp and impose the
boundary condition [χl(Rp) = 0], meaning the wavefunction vanishes at distance Rp, instead of at
infinity. Whether Rp is sufficiently large can be confirmed by checking that increasing Rp further
does not change the results of numerical calculations (convergence check).

Moreover, it is actually not easy to directly find the energy eigenvalue E that satisfies the
boundary condition [χl(Rp) = 0] using the shooting method. This is because even a slight change
in energy E can cause a significant change in the value of χl(Rp) obtained through the recurrence
relation [Eq. (39)].

To avoid such problems, instead of focusing on the value of the wavefunction χl(Rp) at r = Rp,
one can focus on the number of sign changes (nodes) of the wavefunction χl(r) in the region
(0 ≤ r ≤ Rp). For example, from Fig. 1, the wavefunction changes sign 0 times for energy
E = −0.501 Hartree, and 1 time for energy E = −0.499 Hartree. Therefore, we can see that
the energy E for which the number of sign changes in the region (0 ≤ r ≤ 10 Bohr) changes
lies in the range −0.501 a.u. ≤ E ≤ −0.499 a.u.. In this way, one can efficiently determine the
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energy eigenvalue by using methods such as bisection search to find the energy where the number
of sign changes changes. The wavefunction belonging to the lowest eigenvalue has no nodes (no
sign change), so the energy E where the number of nodes changes from 0 to 1 is the energy
eigenvalue of that wavefunction. Similarly, the energy where the number of nodes changes from
1 to 2 corresponds to the energy eigenvalue of the first excited state, and the energy where the
number of nodes changes from 2 to 3 corresponds to the energy eigenvalue of the second excited
state.

While the wavefunction can be obtained using the method described above, it is often con-
venient to normalize the obtained wavefunction. The wavefunction in three-dimensional space
satisfies the following normalization condition:∫

dr |ϕ(r)|2 =

∫ ∞

0

drr2
∫ π

0

dθ sin θ

∫ 2π

∗0dϕ
∣∣∣∣χl(r)

r
Y ∗ lm(θ, ϕ)

∣∣∣∣2
=

∫ ∞

0

dr |χl(r)|2
∫ π

0

dθ sin θ

∫ 2π

∗0dϕ |Y ∗ lm(θ, ϕ)|2

=

∫ ∞

0

dr |χl(r)|2

= 1. (42)

Therefore, the radial wavefunction χl(r) must satisfy the following normalization condition:∫ ∞

0

dr |χl(r)|2 = 1. (43)

Using the values of the wavefunction χl(rj) on the discretized coordinates rj , the normalization
condition can be approximately evaluated by numerical integration:

N∑
j=0

|χl(rj)|2 ∆r = 1. (44)

Based on the above, the Python code for determining the eigenstates of hydrogen-like atoms
is shown in Source Code 2.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src/hydrogen.

py

Source code 2: Code for investigating hydrogen atom eigenstates using the shooting method

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 def calc_radial_wavefunction(zval , l, dr, rmax , num_state):
5 num_grid = int(rmax / dr) + 1
6 rj = np.linspace (0.0, rmax , num_grid)
7

8 chi = np.zeros((num_grid , num_state))
9 energy = np.zeros(num_state)

10

11 for jstate in range(num_state):
12 chi[:, jstate], energy[jstate] = shooting_method(zval , l, dr, num_grid , rj, jstate)
13

14 return rj, chi , energy
15

16

17 def shooting_method(zval , l, dr, num_grid , rj , jstate):
18 chi_s = np.zeros(num_grid)
19 ene_max = 0.1 * zval **2
20 ene_min = -0.6 * zval **2
21

22 for iter in range (100):
23 ene_t = 0.5 * (ene_max + ene_min)
24

25 chi_s , num_node = get_radial_wavefunction(zval , l, dr, num_grid , rj, jstate , ene_t)

11
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26

27 if num_node >= jstate +1:
28 ene_max = ene_t
29 else:
30 ene_min = ene_t
31

32 if ene_max - ene_min < 1e-6:
33 break
34

35

36 ene_t = ene_max
37 chi_s , num_node = get_radial_wavefunction(zval , l, dr, num_grid , rj, jstate , ene_t)
38

39 # refine wavefunction
40 num_node = 0
41 for j in range(1, num_grid - 1):
42 if chi_s[j + 1] == 0.0:
43 num_node += 1
44 elif chi_s[j + 1] * chi_s[j] < 0.0:
45 num_node += 1
46

47 if num_node == jstate +1:
48 chi_s[j+1:] = 0.0
49 break
50

51 norm = np.sum(chi_s **2)*dr
52 chi_s = chi_s / np.sqrt(norm)
53

54 return chi_s , ene_t
55

56

57 def get_radial_wavefunction(zval , l, dr, num_grid , rj , jstate , energy):
58 chi_s = np.zeros(num_grid)
59 chi_s [0] = 0.0
60 chi_s [1] = dr / zval
61 factor = 2 * dr**2
62

63 num_node = 0
64

65 for j in range(1, num_grid - 1):
66 chi_s[j + 1] = (
67 2 * chi_s[j] - chi_s[j - 1]
68 - factor * (energy - 0.5 * l * (l + 1) / rj[j]**2 + zval / rj[j]) * chi_s[j]
69 )
70

71 if chi_s[j+1] == 0.0:
72 num_node += 1
73 elif chi_s[j+1] * chi_s[j] < 0.0:
74 num_node += 1
75

76 return chi_s , num_node
77

78 zval = 1.0
79 num_state = 3
80 dr = 0.01
81 rmax = 100.0
82 l_angular = np.array([0, 1, 2])
83

84 for l in l_angular:
85 rj, chi_l , energy = calc_radial_wavefunction(zval , l, dr, rmax , num_state)
86 print(f"l␣=␣{l},␣Energy␣levels␣:␣{energy}")
87

88 # Plot results
89 plt.figure(figsize =(8, 6))
90 for i in range(num_state):
91 plt.plot(rj, chi_l[:, i], label=f"{i}-state")
92

93 plt.xlim (0.0, 50.0)
94 plt.ylim(-0.5, 0.8)
95 plt.xlabel("Radius␣(Bohr)")
96 plt.ylabel(r"$\chi␣(r)$")
97 plt.title(f"Wavefunctions␣(l={l})")
98 plt.legend ()
99 plt.grid()

100 plt.tight_layout ()
101

102 plt.savefig(f"hydrogen_wf_l{l}.pdf", dpi =300)

The behavior of the radial wavefunction of the hydrogen atom eigenstates obtained by executing

12



Source Code 2 is shown in Fig. 2.
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Figure 2: Process of determining the eigenvalues of the hydrogen atom ground state using the
shooting method.
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3 Helium atom

In this section, we will first revisit basic quantum mechanics topics such as perturbation theory
and the variational method. Building on these fundamentals, we will further explain the mean-
field approximation and the Hartree–Fock method through an analysis of the ground state of the
helium atom.

3.1 Two-electron wavefunctions and spin

When investigating the eigenstates of single-electron systems such as the hydrogen atom, the spin
degrees of freedom were not explicitly considered. However, in the study of multi-electron systems,
the spin degrees of freedom of electrons play an important role. To represent this spin degree of
freedom, let us denote the z-component of spin for each electron as sz,1 and sz,2, and express the
two-electron wavefunction including the spin degree of freedom as Ψ(r1, sz,1, r2, sz,2). Here, sz,j
takes the value + 1

2 or − 1
2 , corresponding respectively to the states with +h̄/2 or −h̄/2 of spin

angular momentum in the z-direction.
Since electrons are fermions, their wavefunction must be antisymmetric under particle ex-

change. In the case of a two-electron system, the wavefunction must satisfy the following anti-
symmetry:

Ψ(r2, sz,2, r1, sz,1) = −Ψ(r1, sz,1, r2, sz,2). (45)

For later convenience, we introduce the spin functions α(sz) and β(sz) as follows:

α(sz) =

{
1 sz = + 1

2

0 sz = − 1
2

(46)

β(sz) =

{
0 sz = + 1

2

1 sz = − 1
2

(47)

Here, α(sz) and β(sz) are functions corresponding to the spin-up state (sz = 1/2) and spin-
down state (sz = −1/2), respectively. Note also that any spin function χ(sz) can be expressed as
a linear combination of α(sz) and β(sz).

As a concrete example using spin functions, let us consider the one-particle wavefunction for a
spin-up electron occupying the 1s orbital of a hydrogen atom (ϕ1s(r)). The wavefunction for such
a state can be written as follows:

ψ(r, sz) = ϕ1s(r)α(sz). (48)

3.2 Schrödinger equation for helium-like atoms

Helium-like atoms are quantum many-body systems in which two electrons are bound to a nucleus
with atomic number Z. In the case of a helium nucleus, Z = 2. For simplicity, we consider the
nucleus as a fixed point charge located at the origin and treat the helium-like atom approximately
as a two-electron system. The Schrödinger equation for such a two-electron system is given by:[

− h̄2

2me
∇2

1 −
h̄2

2me
∇2

2 −
e2

4πε0

Z

r1
− e2

4πε0

Z

r2
+

e2

4πε0

1

|r1 − r2|

]
Ψ(r1, sz,1, r2, sz,2)

= EΨ(r1, sz,1, r2, sz,2). (49)

By finding the ground state of this Schrödinger equation, we can investigate the properties of
the ground state of helium-like atoms. This problem is a quantum many-body problem and cannot
be solved analytically like the hydrogen atom. In this section, we learn methods to approximately
study the ground state of helium-like atoms.
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3.3 Ground state analysis of the helium atom using first-order pertur-
bation theory

First, let us examine the ground state of the helium atom using perturbation theory. To apply
perturbation theory, we divide the Hamiltonian in Eq. (49) into the unperturbed term Ĥ0 and the
perturbation term V̂ as follows:

Ĥ0 = − h̄2

2me
∇2

1 −
h̄2

2me
∇2

2 −
e2

4πε0

Z

r1
− e2

4πε0

Z

r2
, (50)

V̂ =
e2

4πε0

1

|r1 − r2|
. (51)

If there is no degeneracy in the ground state, the ground state energy, including the first-order
perturbation, is given by evaluating the expectation value of the full Hamiltonian (Ĥ = Ĥ0 + V̂ )
using the ground state |Φ0⟩ of the unperturbed Hamiltonian. Then, the approximate ground state
energy to first order in perturbation theory is given by

E0 ≈ Ẽ(0)
0 + Ẽ

(1)
0 =

⟨Φ0|Ĥ|Φ0⟩
⟨Φ0|Φ0⟩

=
⟨Φ0|Ĥ0|Φ0⟩
⟨Φ0|Φ0⟩

+
⟨Φ0|V̂ |Φ0⟩
⟨Φ0|Φ0⟩

, (52)

where Ẽ
(0)
0 is the zeroth-order perturbation energy, and Ẽ

(1)
0 is the first-order perturbation energy.

To explicitly evaluate this expression, let us first examine the ground state of the unperturbed
Hamiltonian Ĥ0. The unperturbed Hamiltonian Ĥ0 given in Eq. (50) can be expressed as a sum
of one-body Hamiltonians for each electron coordinate:

Ĥ0 = ĥ(r1) + ĥ(r2), (53)

ĥ(rj) = −
h̄2

2me
∇2

j −
e2

4πε0

Z

rj
. (54)

Here, as a solution to the Schrödinger equation for the unperturbed Hamiltonian Ĥ0, consider a
separable solution of the form Φ̃0(r1, sz,1, r2, sz,2):

Ĥ0Φ̃0(r1, sz,1, r2, sz,2) = E(0)Φ̃0(r1, sz,1, r2, sz,2), (55)

Φ̃0(r1, sz,1, r2, sz,2) = ϕ1(r1, sz,1)ϕ2(r2, sz,2). (56)

Substituting Eq. (56) into Eq. (55), it can be seen that the single-particle wave functions

ϕ1(r, s) and ϕ2(r, s) are eigenstates of the one-body Hamiltonian ĥ(r) and satisfy the following
equations:

ĥ(r1)ϕ1(r1, sz,1) = ε1ϕ1(r1, sz,1), (57)

ĥ(r2)ϕ2(r2, sz,2) = ε2ϕ2(r2, sz,2), (58)

E(0) = ε1 + ε2. (59)

Using the wave function ϕ1s(r) from Eq. (15), the lowest energy solutions to Eq. (57) and
Eq. (58) are written as

ϕ1(r1, sz,1) = ϕ1s(r1)χ1(sz,1) =

√
Z3

a30
· 2e−Zr/a0

1√
4π
χ1(sz,1), (60)

ϕ2(r2, sz,2) = ϕ1s(r1)χ2(sz,2) =

√
Z3

a30
· 2e−Zr/a0

1√
4π
χ2(sz,2), (61)

where χ1(s1) and χ2(s2) are arbitrary spin functions. Also, note that the energy eigenvalues of
these single-particle wave functions are

ε1 = ε2 = −Z
2

2

me

h̄2

(
e2

4πε0

)2

= − h̄2

2me

(
Z

a0

)2

. (62)
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The wave function of a Fermi particle system must be antisymmetric with respect to particle
exchange. However, a wave function given by Eq. (56), Φ̃0(r1, sz,1, r2, sz,2), does not generally
satisfy antisymmetry. Therefore, let us consider explicit antisymmetrizing this wave function as
follows:

Φ0(r1, sz,1, r2, sz,2) = N
[
Φ̃0(r1, sz,1, r2, sz,2)− Φ̃0(r2, sz,2, r1, sz,1)

]
= Nϕ1s(r1)ϕ1s(r2) [χ1(sz,1)χ2(sz,2)− χ1(sz,2)χ2(sz,1)] . (63)

Here, the constant N represents the normalization factor. This wave function indicates that
both electron 1 and electron 2 occupy the 1s orbital spatially. Moreover, if electron 1 and electron 2
occupy the same spin state (for example, both in the spin-up state α(sz)), the spin part of the wave
function becomes zero due to antisymmetrization. Therefore, it is clear that two electrons cannot
occupy the same spatial orbital and spin. This is nothing but the Pauli exclusion principle.

Furthermore, when the spin functions χ1(sz) and χ2(sz) of electron 1 and electron 2 occupy
different spin states, the wave function in Eq. (63) becomes a spin singlet state. This can be un-
derstood by expanding each spin function in terms of α(sz) and β(sz) and choosing an appropriate
normalization constant, which leads to the wave function in Eq. (63) being expressed as

Φ0(r1, sz,1, r2, sz,2) = ϕ1s(r1)ϕ1s(r2)
1√
2
[α(sz,1)β(sz,2)− α(sz,2)β(sz,1)] . (64)

The wave function in Eq. (64) is an eigenstate of the unperturbed Hamiltonian, and the zeroth-

order energy Ẽ
(0)
0 is given by

Ẽ
(0)
0 = −2× Z2

2

me

h̄2

(
e2

4πε0

)2

= −Z2me

h̄2

(
e2

4πε0

)2

= −Z2EH . (65)

Here, EH is the Hartree energy unit defined in Eq. (24).

Furthermore, let us evaluate the first-order perturbation energy Ẽ
(1)
0 using equation (52) as

follows:

Ẽ
(1)
0 =

⟨Φ0|V̂ |Φ0⟩
⟨Φ0|Φ0⟩

=

∫
dr1dr2

e2

4πε0

1

|r1 − r2|
|ϕ1s(r1)|2 |ϕ1s(r2)|2

=
5

8

e2

4πε0

Z

a0
=

5

8
ZEH . (66)

This energy is nothing but the Coulomb energy between the charge densities e |ϕ1s(r1)|2 and

e |ϕ1s(r2)|2 of the 1s orbital electrons.
By performing such a calculation, the ground state energy of helium-like atoms can be evaluated

by considering the first-order term of the electron-electron interaction as follows:

Egs ≈ Ẽ(0)
0 + Ẽ

(1)
0 =

(
−Z2 +

5

8
Z

)
EH . (67)

Specifically, evaluating this for the helium atom (Z = 2), the ground state energy using first-
order perturbation theory is Egs =

(
−4 + 10

8

)
EH = −2.75 Hartree ≈ −74.83 eV. The experimen-

tally measured binding energy of the helium atom is −2.9033 Hartree ≈ −79.00 eV, indicating
that using first-order perturbation theory yields a result with an error of approximately 5%.

3.4 Ground state analysis of the helium atom using the variational
method

3.4.1 Revisit of the variational method

Let us investigate the ground state of the helium atom using the variational method. First, we
revisit the variational method.
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We introduce the eigenstates and eigenenergies for a given Hamiltonian Ĥ as follows:

Ĥ|Φn⟩ = En|Φn⟩. (68)

Here, we assume that the eigenstates |ϕn⟩ form an orthonormal set.
Furthermore, consider evaluating the energy expectation value E using a given wavefunction

|Ψ⟩:

E =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

. (69)

Here, expand the wavefunction |Ψ⟩ in terms of the eigenstates |Φn⟩ as follows:

|Ψ⟩ =
∑
n

cn|Φn⟩. (70)

Using the expansion in Eq. (70), the energy expectation value can be evaluated as follows:

E =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

=

∑
nEn|cn|2∑
n |cn|2

≥
∑

nEgs|cn|2∑
n |cn|2

= Egs. (71)

Here, Egs represents the ground state energy, and we used the fact that En ≥ Egs for any eigen-
value.

From this discussion, we obtain

E =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

≥ Egs, (72)

which indicates that the expected energy value evaluated using any wavefunction is never smaller
than the ground state energy, and its minimum value is Egs. This is called the variational
principle.

The method of ground state analysis using the variational principle is called the variational
method. Since the variational principle [Eq. (72)] guarantees that the minimum of the expected
energy value is the ground state energy, finding a wavefunction that minimizes the energy as much
as possible can be regarded as a better approximate wavefunction for the ground state.

Variational method exercise 1: Harmonic oscillator and Gaussian function

As an exercise in the variational method, let us analyze the ground state of a harmonic oscillator
using a Gaussian function as the trial wavefunction. Consider the harmonic oscillator Hamiltonian
Ĥ given by:

Ĥ = − h̄2

2m

∂2

∂x2
+
m

2
ω2x2. (73)

Furthermore, consider a Gaussian-type trial wavefunction as

ψ(x) = e−ax2

. (74)

Here, a is an arbitrary constant, determined such that the expectation value of the energy is
minimized. Such a parameter is called a variational parameter. Using this Gaussian-type
trial wavefunction, calculate the expectation value of the harmonic oscillator Hamiltonian and
determine the value of a that minimizes this expectation value. Also, compare the resulting
ground state energy and wavefunction with the exact ground state energy and wavefunction of
the harmonic oscillator.
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Variational method exercise 2: Harmonic oscillator and quadratic function

Investigate the ground state of the harmonic oscillator given by Eq. (73) using the variational
method with the following trial wavefunction:

ψ(x) =

{
(x+ a)(x− a) −a ≤ x ≤ a
0 otherwise

(75)

3.4.2 Analysis of the helium ground state using the variational method

Here, we approximately examine the ground state of helium-like atoms using the variational
method. As described in Section 3.3, the ground state of a helium-like atom in the absence of
electron-electron interactions is expressed as the product of 1s orbital wavefunctions of hydrogen-
like atoms. Therefore, we consider the following trial wavefunction, using the nuclear charge Z
that appears in the 1s orbital wavefunction as a variational parameter:

Φ0(r1, sz,1, r2, sz,2) =
1

π

Z̃3

a30
· exp

[
− Z̃r1
a0

]
exp

[
− Z̃r2
a0

]
× 1√

2
[α(sz,1)β(sz,2)− α(sz,2)β(sz,1)] .

(76)

Here, Z̃ is the variational parameter and represents the effective nuclear charge felt by the
electrons. Using this trial wavefunction, evaluating the expectation value of the Hamiltonian in
Eq. (49) yields the following expression as a function of Z̃:

E(Z̃) = 2 · h̄
2

2m

Z̃2

a20
− 2 · Ze

2

4πε0

Z̃

a0
+

5

8

e2

4πε0

Z̃

a0

= Z̃2EH − 2ZZ̃EH +
5

8
Z̃EH

=

[{
Z̃ −

(
Z − 5

16

)}2

−
(
Z − 5

16

)2
]
EH . (77)

The effective nuclear charge that minimizes this energy expectation value is

Z̃ = Z − 5/16 (78)

and the corresponding energy expectation value is

E(Z̃) = −
(
Z − 5

16

)2

EH . (79)

This can be interpreted as the Coulomb attraction felt by an electron from the nucleus being
effectively reduced by 5/16 of the nuclear charge Z due to the screening effect of the other electron.

At this point, the ground state energy of the helium atom (Z = 2) obtained via the variational
method is

Egs ≈ −
(
27

16

)2

EH ≈ 77.49 eV (80)

The experimentally measured binding energy of the helium atom is −2.9033 Hartree ≈ −79.00 eV,
indicating that the variational method yields a value with an error of about 2%.

3.5 Hartree–Fock equation for two-electron systems

As we have seen so far, the accuracy of the variational methods strongly depends on the trial
wavefunction. In general, using a trial wavefunction that allows exploration of a wider range of
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the wavefunction space enables a more accurate analysis of the ground state. In the previous
section, we introduced a trial wavefunction as a product of the 1s orbitals of hydrogen-like atoms.
At that time, the effective nuclear charge Z̃ was the variational parameter. Here, in order to
expand the variational space in the variational method, we introduce a two-electron wavefunction
that can be written in the following form:

Φ0(r1, sz,1, r2, sz,2) = ϕ(r1)ϕ(r2)
1√
2
[α(sz,1)β(sz,2)− α(sz,2)β(sz,1)]

=
1√
2

∣∣∣∣ϕ(r1)α(sz,1) ϕ(r2)α(sz,2)
ϕ(r1)β(sz,1) ϕ(r2)β(sz,2)

∣∣∣∣ . (81)

This is nothing more than replacing the spatial part of the trial wavefunction in Eq. (76) with
a general one-particle wavefunction ϕ(r). Also, in the trial wavefunction of Eq. (76), the effective
nuclear charge Z̃ was the single variational parameter, whereas here, we aim to minimize the
energy expectation value by optimizing the one-particle wavefunction ϕ(r) itself.

Using the trial wavefunction in Eq. (81), we calculate the energy expectation value of the
Hamiltonian in Eq. (49), obtaining the following expression:

E [ϕ(r)] =
2
∫
drϕ∗(r)ĥ(r)ϕ(r)∫
dr |ϕ(r)|2

+
e2

4πε0

1(∫
dr |ϕ(r)|2

)2 ∫ drdr′
|ϕ(r)|2 |ϕ(r′)|2

|r − r′|
. (82)

Here, the one-body Hamiltonian ĥ(r) is defined by Eq. (54). Also, the energy expectation value
is denoted as E [ϕ(r)], explicitly indicating that a specific value is determined for a given function
ϕ(r). A function returns a value for a given input x, i.e., f(x), but something that returns a
value for a given function ϕ(r), like the energy expectation value E [ϕ(r)] in Eq. (82), is called a
functional. Functionals will be revisited in Sec. 3.6.

To approximately study the ground state of a helium-like atom, we seek the single-particle
wavefunction ϕ(r) that minimizes the energy expectation value given by Eq. (82). To do this, we
consider a small deviation ϕ(r) + δϕ(r) from the wavefunction ϕ(r) that minimizes the energy
expectation value, and examine how the energy expectation value changes due to this infinitesimal
variation:

δE = E [ϕ(r) + δϕ(r)]− E [ϕ(r)] . (83)

If the single-particle wavefunction ϕ(r) minimizes the energy expectation value E [ϕ(r)], then
for any change δϕ(r), the following inequality must hold:

E [ϕ(r) + δϕ(r)] ≥ E [ϕ(r)] . (84)

Therefore, we find that δE ≥ 0. Hence, if ϕ(r) minimizes E [ϕ(r)], the first-order contribution of
δϕ(r) to δE must vanish.

By using this condition, we can derive the equation that ϕ(r) must satisfy. Consider expanding
δE in terms of δϕ(r). The first-order contribution of δϕ(r) to δE, denoted as δE(1), is given by:

δE(1) =
2∫

dr |ϕ(r)|2

[∫
drδϕ∗(r)

{
ĥ(r) +

e2

4πε0

∫
dr′

ρ(r′)

|r − r′|
− ε
}
ϕ(r)

]
+

2∫
dr |ϕ(r)|2

[∫
drϕ∗(r)

{
ĥ(r) +

e2

4πε0

∫
dr′

ρ(r′)

|r − r′|
− ε
}
δϕ(r)

]
. (85)

Here, ρ(r) and ε are defined as follows:

ρ(r) =
1∫

dr |ϕ(r)|2
|ϕ(r)|2 , (86)

ε =
1∫

dr |ϕ(r)|2

[∫
drϕ∗(r)

{
ĥ(r) +

e2

4πε0

∫
dr′

ρ(r′)

|r − r′|

}
ϕ(r)

]
. (87)
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If ϕ(r) minimizes E [ϕ(r)], then based on the above argument, δE(1) in Eq. (85) must vanish
for any δϕ(r). To achieve this, noting that the two terms on the right-hand side of Eq. (85) are
complex conjugates of each other, it is sufficient that the integrand in the first term, excluding
δϕ(r), vanishes. This leads to the following equation that must be satisfied:[

ĥ(r) +
e2

4πε0

∫
dr′

ρ(r′)

|r − r′|

]
ϕ(r) = εϕ(r). (88)

One sees that Eq. (88) takes a similar form to a Schrödinger equation for a single electron. The
potential consists of the Coulomb attraction from the nucleus and the Coulomb repulsion from the
charge density, −eρ(r), of the other electron. The original problem of a helium-like atom involves
two electrons moving complexly in a six-dimensional space under mutual influence. However,
Eq. (88) is a three-dimensional equation for a single electron, where the effective Hamiltonian
includes a Coulomb potential averaged over the probability density of the other electron. This type
of approximation is called themean-field approximation ormean-field picture. Furthermore,
Eq. (88) is the Hartree–Fock equation applied to the two-electron problem of the helium atom.
More general expression of the Hartree–Fock equation is discussed in Sec. 3.8.

3.6 Functionals and functional derivatives

For convenience later on, let us briefly touch on the concept of a functional. A conventional
function is a mapping from one value to another. For example, a function f(x) maps a given value
x1 to the value f(x1). A functional, often described as a “function of a function,” represents a
mapping from a function to a value. For instance, given a function f(x), a functional that returns
a value is written as F [f(x)]. A simple example of a functional is the following definite integral:

F [f(x)] =

∫ 1

0

dx f(x). (89)

This definite integral acts as a functional that returns a value F [f(x)] when a function f(x) is
given.

Next, we address the concept of the derivative of a functional. Consider a functional F [f(x)]
that depends on a function f(x) defined over the domain [xi, xf ]. Let us evaluate the infinitesimal
change in the functional when f(x) is slightly changed to f(x) + δf(x).

δF = F [f(x) + δf(x)]− F [f(x)] . (90)

If δf(x) is sufficiently small such that higher-order contributions can be ignored, then δF can be
evaluated as follows (the reason will be explained later):

δF ≈
∫ xf

xi

dx δf(x)G(x). (91)

In this expression, G(x) is called the functional derivative of F [f(x)] with respect to f(x) and is
expressed as:

δF

δf(x)
= G(x). (92)

We previously derived the Hartree—Fock equation for a two-electron system from Eq. (85).
By using the expression for functional derivatives, this is equivalent to examining the condition
under which the functional derivative vanishes:

δE

δϕ∗(r)
=

[
ĥ(r) +

e2

4πε0

∫
dr′

ρ(r′)

|r − r′|
− ε
]
ϕ(r) = 0. (93)
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Now, let us consider how to understand the expression in Eq. (91). Suppose the functional
F [f(x)] is a functional of a function f(x) defined over the domain [xi, xf ]. Let us divide the
domain into N equal parts and define the N coordinates as follows:

xj = j ×∆x+ xi, (94)

∆x =
xf − xi
N

. (95)

Here, j is an integer from 0 to N − 1. Let us denote the value of the function f(x) evaluated at
each xj as fj , i.e., let fj = f(xj).

Consider a multivariable function FN (f0, · · · , fN−1) that depends on these N variables. Sup-
pose each value fj is changed to fj + δfj . If the variations δfj are sufficiently small and higher-
order contributions are negligible, the change in the function can be described using a first-order
Taylor expansion:

FN (f0 + δf0, · · · , fN−1 + δfN−1) ≈ FN (f0, · · · , fN−1) +

N−1∑
j=0

∂

∂fj
FN (f0, · · · , fN−1)δfj (96)

Therefore, the variation δFN of the multivariable function can be evaluated as follows:

δFN = FN (f0 + δf0, · · · , fN−1 + δfN−1)− FN (f0, · · · , fN−1)

≈
N−1∑
j=0

∂FN (f0, · · · , fN−1)

∂fj
δfj

=

N−1∑
j=0

∆x
1

∆x

∂FN (f0, · · · , fN−1)

∂fj
δfj (97)

=

N−1∑
j=0

∆xGjδfj . (98)

Here, we define:

Gj =
1

∆x

∂

∂fj
FN (f0, · · · , fN−1) (99)

The functional F [f(x)] depends on the value of the function f(x) at every point in its domain.
This kind of dependence is realized in the limit as N → ∞ of the N -variable function discussed
above. Thus, by identifying such a multivariable function with a functional, the infinitesimal
variation of the functional F [f(x)] can be evaluated as:

δF = lim
N→∞

δFN = lim
N→∞

N−1∑
j=0

∆xGjδfj =

∫ xf

xi

dxG(x)δf(x). (100)

In this way, we obtain an expression like Eq. (91).

3.7 Numerical solution of the Hartree–Fock equation for helium-like
atoms

Here, we describe how to numerically solve the Hartree–Fock equation given by Eq. (88). First, let
us focus on the nonlinearity of this equation. The Schrödinger equation is linear with respect to the
wavefunction, whereas Eq. (88) is a nonlinear equation with respect to the single-particle orbital
ϕ(r). Due to this nonlinearity, even if we attempt to solve Eq. (88) as an eigenvalue problem
for a Hamiltonian similar to the ordinary Schrödinger equation, we would need to know ϕ(r) in
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advance to construct such a Hamiltonian. Therefore, in order to solve Eq. (88), some additional
techniques are required beyond the usual solution methods for the Schrödinger equation.

Here, we explain the commonly used self-consistent field (SCF) iteration method. The
general procedure is as follows: first, using an initial density ρ(r), the potential on the left-hand
side of Eq. (88) is evaluated, and an effective Hamiltonian is constructed. Then, the ground state
of this effective Hamiltonian is determined. From the wavefunction of the obtained ground state,
a new density ρ(r) is evaluated, and the potential and Hamiltonian are updated to again find the
ground state. By repeating this process, if the density used to construct the Hamiltonian becomes
equal to the density produced by the ground state of that Hamiltonian, then the nonlinear equation
is consistently solved.

Specifically, this is done through an iterative method as follows:

1. Set an initial electron density ρ(0)(r) arbitrarily.

2. Given the electron density ρ(n)(r), evaluate the potential term of the Hartree–Fock equation,

Eq. (88), as
∫
dr′ ρ

(n)(r′)
|r−r′| . Here, n is an integer, initially set to n = 0.

3. Solve the Hartree–Fock equation [Eq. (88)] with the given potential term, and denote the
resulting wavefunction as ϕ(n+1)(r).

4. If the density ρ(n+1)(r) obtained from the solved wavefunction ϕ(n+1)(r) matches the density
ρ(n)(r) used to construct the potential, then the nonlinear equation is solved. If not, return
to step 2 using the new density ρ(n+1)(r).

Furthermore, in order to perform concrete numerical calculations, we assume spherical sym-
metry of the wavefunction and derive the radial equation. As with the numerical solution of
hydrogen-like atoms, we assume a spherically symmetric solution of the form:

ϕ(r) = ϕ(r) =
1√
4π

χ(r)

r
. (101)

Substituting this spherically symmetric solution into Eq. (88), we can derive the following radial
equation: [

− h̄2

2me

d2

dr2
− e2

4πε0

Z

r
+ VHF (r)

]
χ(r) = εχ(r). (102)

Here, the potential VHF (r) is defined assuming spherical symmetry of the density (ρ(r) = ρ(r) =
|ϕ(r)|2) as follows:

VHF (r) =
e2

4πε0

∫
dr′

ρ(|r′|)
|r − r′|

=
e2

4πε0

[
4π

r

∫ r

0

dr′r′2ρ(r′) + 4π

∫ ∞

r

dr′r′ρ(r′)

]
. (103)

The right-hand side of Eq. (103) is obtained by performing the angular integration of the 3D
integral using the spherical symmetry of ρ(r).

Moreover, by using the energy eigenvalue ε of the Hartree–Fock equation (88), the ground state
energy [Eq. (82)] can be rewritten as:

E = 2ε− 4π

∫ ∞

0

drr2ρ(r)VHF (r). (104)

With the above discussion, we are now ready to construct a computational code to investigate
the ground state of helium-like atoms using the Hartree–Fock method. Let us actually create such
a code and examine the accuracy of ground state calculations by the Hartree–Fock method.

For reference, the source code 3 shows an example of a calculation code for the Hartree–Fock
method applied to the helium atom.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src/helium.

py
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Source code 3: Example code for Hartree–Fock method calculation for the helium atom

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 def calc_hf_method(nscf , rmax , dr , zval):
5

6 num_grid = int(rmax/dr)+1
7 rj = np.linspace (0.0, rmax , num_grid)
8

9 phi = np.zeros(num_grid)
10

11 for iscf in range(nscf):
12

13 rho = phi **2
14 vhf = calc_potential(rho , rj, dr , num_grid)
15 phi , epsilon_s = calc_wavefunction(rj, dr , num_grid , vhf , zval)
16

17 total_energy = 2* epsilon_s - 4.0*np.pi*np.sum(rj**2* rho*vhf)*dr
18

19 print("iscf ,␣energy␣=",iscf , total_energy)
20

21 return rj, phi , total_energy
22

23 def calc_potential(rho , rj , dr, num_grid):
24

25 vhf = np.zeros(num_grid)
26

27 for i in range(num_grid):
28

29 v1 = 0.0
30 for j in range(i):
31 v1 = v1 + rj[j]**2* rho[j]*dr
32

33 v1 = v1 + 0.5*rj[i]**2* rho[i]*dr
34 if(i == 0):
35 v1 = 0.0
36 else:
37 v1 = 4.0*np.pi*v1/rj[i]
38

39

40 v2 = 0.5*rj[i]*rho[i]*dr
41 for j in range(i+1, num_grid):
42 v2 = v2 + rj[j]*rho[j]*dr
43

44 v2 = 4.0*np.pi*v2
45

46 vhf[i] = v1 + v2
47

48 return vhf
49

50 def calc_wavefunction(rj, dr, num_grid , vhf , zval):
51

52 ene_max = 0.0 * zval
53 ene_min = -0.6 * zval **2
54

55

56 for iter in range (100):
57 ene_t = 0.5 * (ene_max + ene_min)
58

59 chi , num_node = get_wavefunction(rj, dr, num_grid , vhf , zval , ene_t)
60

61 if num_node >= 1:
62 ene_max = ene_t
63 else:
64 ene_min = ene_t
65

66 if ene_max - ene_min < 1e-6:
67 break
68

69 ene_t = ene_max
70 chi , num_node = get_wavefunction(rj, dr, num_grid , vhf , zval , ene_t)
71

72 # refine wavefunction
73 num_node = 0
74 for j in range(1, num_grid - 1):
75 if chi[j + 1] == 0.0:
76 num_node += 1
77 elif chi[j + 1] * chi[j] < 0.0:
78 num_node += 1
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79

80 if num_node == 1:
81 chi[j+1:] = 0.0
82 break
83

84 norm = np.sum(chi **2)*dr
85 chi = chi/np.sqrt(norm)
86

87 phi = np.zeros(num_grid)
88 phi [1: num_grid -1] = chi [1: num_grid -1]/rj[1: num_grid -1]
89 phi [0] = 2*phi [1] - phi[2]
90 phi = phi/(np.sqrt (4.0*np.pi))
91

92

93 return phi , ene_t
94

95 def get_wavefunction(rj , dr, num_grid , vhf , zval , energy):
96

97 chi = np.zeros(num_grid)
98 num_node = 0
99

100 chi [0] = 0.0
101 chi [1] = dr / zval
102

103 factor = 2 * dr**2
104 for j in range(1, num_grid - 1):
105 chi[j + 1] = (
106 2 * chi[j] - chi[j - 1]
107 - factor * (energy + zval / rj[j] - vhf[j]) * chi[j]
108 )
109

110 if chi[j+1] == 0.0:
111 num_node += 1
112 elif chi[j+1] * chi[j] < 0.0:
113 num_node += 1
114

115 return chi , num_node
116

117 zval = 2.0
118 nscf = 10
119 rmax = 20.0
120 dr = 0.005
121

122

123 rj , phi , total_energy = calc_hf_method(nscf , rmax , dr, zval)
124

125

126 chi = rj*phi
127 plt.figure(figsize =(8, 6))
128 plt.plot(rj , chi)
129 plt.xlim (0.0, 8.0)
130 plt.ylim(-0.1, 0.3)
131 plt.xlabel("Radius␣(Bohr)")
132 plt.ylabel(r"$\chi␣(r)$")
133 plt.title(f"Wavefunctions")
134 plt.grid()
135 plt.tight_layout ()
136

137 plt.savefig("helium_hf_wavefunction.pdf", dpi =300)

In the above calculation using the Hartree-Fock approximation, the ground state energy of the
helium atom is obtained as −2.8617 Hartree (≈ −77.87 eV). This corresponds to an accuracy of
about 99.85 % compared to the experimental value of the ground state energy (binding energy)
of the helium atom, −2.9033 Hartree (≈ −79.00 eV). As we have seen so far, in the approximate
calculation using first-order perturbation theory, the approximate value of the ground state energy
is E1st = −2.75 Hartree ≈ −74.73 eV, which has an error of about 5% compared to the experi-
mental value. Also, in the variational method using an exponential-type trial wave function, the
approximate value of the ground state energy is Eval ≈ −2.85 Hartree ≈ −77.49 eV, with an error
of about 2% compared to the experimental value.

Looking at the numerical values presented here, the Hartree–Fock method appears to be a
highly accurate computational method. However, in practical applications, the calculation ac-
curacy may sometimes be insufficient. In such cases, more accurate computational methods
are required. Nevertheless, even when considering more advanced computational methods, the
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Hartree–Fock method is often a very important theory that serves as their foundation.

3.8 Slater determinant and the Hartree–Fock equation for an N-particle
system

In the previous section, we discussed the case where the number of particles N is fixed at 2.
Here, we introduce the Slater determinant for a general number of particles N and describe its
properties. We also discuss the Hartree–Fock equation derived using the variational method with
the Slater determinant as a trial function.

3.8.1 Properties of the Slater Determinant

Here, we consider the wavefunction of a quantum many-body system of N fermions. Let the
wavefunction be denoted by Ψ(x1, · · · , xN ). Here, xj represents the general coordinate of the j-th
particle. For example, xj may be a coordinate combining the three-dimensional space and spin,
such as xj = (rj , sz,j).

First, as a wavefunction that satisfies the antisymmetry required for a fermionic system, we
introduce the Slater determinant as follows:

Φ(x1, · · · , xN ) =
1√
N !

∣∣∣∣∣∣∣
ϕ1(x1) · · · ϕ1(xN )

...
. . .

...
ϕN (x1) · · · ϕN (xN )

∣∣∣∣∣∣∣ =
1√
N !

∑
σ

sgn(σ)

N∏
j

ϕσ(j)(xj) (105)

Here, {ϕ1(x), · · · , ϕN (x)} represents N orthonormal single-particle orbitals, and the sum is taken
over all possible permutations σ. From the property of determinants that changes the sign with
column exchanges, it is immediately evident that the Slater determinant is antisymmetric under
particle exchange. Also, if two orbitals are the same (e.g., ϕi(x) = ϕj(x)), the Slater determinant
becomes zero due to the properties of determinants. This expresses the Pauli exclusion princi-
ple, which states that two fermions cannot occupy the same quantum state. Furthermore, when
the number of particles is N = 2, it can be seen that the Slater determinant in Eq. (105) coincides
with Eq. (81).

Here, we examine several properties of the Slater determinant.

Normalization

The Slater determinant expressed in Eq. (105) is normalized. This can be demonstrated as
follows: ∫

dx1 · · · dxN Φ∗(x1, · · · , xN )Φ(x1, · · · , xN )

=
1

N !

∑
στ

sgn(σ)sgn(τ)

N∏
j

(∫
dxjϕ

∗
σ(j)(xj)ϕτ(j)(xj)

)

=
1

N !

∑
στ

sgn(σ)sgn(τ)

N∏
j

δτ(j),σ(j)

=
1

N !

∑
στ

sgn(σ)sgn(τ)δτ,σ

=
1

N !

∑
σ

sgn2(σ)

=
1

N !
N !

= 1. (106)
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Eigenstates of a non-interacting system

The Hamiltonian of a non-interacting particle system is expressed as the sum of single-particle
Hamiltonians ĥ(x) for each particle, as follows:

Ĥ =

N∑
j=1

ĥ(xj). (107)

Here, we introduce the orthonormal eigenstates of the single-particle Hamiltonian as follows:

ĥ(x)ϕj(x) = εjϕj(x). (108)

In this case, the Slater determinant composed of the eigenstates ϕj(x) becomes an eigenstate of

the many-body Hamiltonian Ĥ. This can be demonstrated as follows:

ĤΦ(x1, · · · , xN ) =

N∑
j=1

ĥ(xj)
1√
N !

∑
σ

sgn(σ)

N∏
k

ϕσ(k)(xk)

=
1√
N !

∑
σ

sgn(σ)

 N∑
j=1

ĥ(xj)

 N∏
k

ϕσ(k)(xk)

=
1√
N !

∑
σ

sgn(σ)

 N∑
j=1

ε̂σ(j)

 N∏
k

ϕσ(k)(xk)

=
1√
N !

∑
σ

sgn(σ)

 N∑
j=1

ε̂j

 N∏
k

ϕσ(k)(xk)

=

N∑
j=1

εj
1√
N !

∑
σ

sgn(σ)

N∏
k

ϕσ(k)(xk)

=

 N∑
j=1

εj

Φ(x1, · · · , xN )

= EΦ(x1, · · · , xN ). (109)

Here, we have defined E =
∑N

j=1 εj . In this way, the eigenstates of a non-interacting system can
be represented by a single Slater determinant, and each orbital forming the Slater determinant is
an eigenstate of the single-particle Hamiltonian. Additionally, the energy eigenvalue of the entire
system is the sum of the energy eigenvalues of each orbital.

Expectation value of one-body operators

Hamiltonians of non-interacting particle systems, such as Ĥ =
∑

j ĥ(xj), and the total mo-

mentum of the system, P̂ =
∑

j p̂j , are expressed as sums of operators (such as ĥ(x) and p̂)
that involve only the degrees of freedom of a single particle. These types of operators are called
one-body operators. In general, a one-body operator Â for an N -particle system can be written
in the following form:

Â =

N∑
j=1

â(xj). (110)

Here, â(xj) is an operator that acts only on the degrees of freedom of the j-th particle.

27



When evaluating the expectation value of such a one-body operator using a Slater determinant,
the following relation is obtained:∫

dx1 · · · dxNΦ∗(x1, · · · , xN )ÂΦ(x1, · · · , xN )

=

N∑
l=1

∫
dx1 · · · dxNΦ∗(x1, · · · , xN )â(xl)Φ(x1, · · · , xN )

= N

∫
dx1 · · · dxNΦ∗(x1, · · · , xN )â(x1)Φ(x1, · · · , xN )

=
1

N !
N
∑
σ,τ

sgn(σ)sgn(τ)

∫
dx1 · · · dxN

N∏
j=1

ϕ∗τ(j)(xj)â(x1)

N∏
k=1

ϕσ(k)(xk)

=
1

N !
N
∑
σ,τ

sgn(σ)sgn(τ)

∫
dx1ϕ

∗
τ(1)(x1)â(x1)ϕσ(1)(x1)

N∏
j=2

(∫
dxjϕ

∗
τ(j)(xj)ϕσ(j)(xj)

)

=

N∑
j=1

∫
dxϕ∗j (x)â(x)ϕj(x). (111)

Therefore, when the expectation value of a one-body operator is calculated using a Slater
determinant, the value is equal to the sum of the expectation values of the corresponding one-
body operator for each orbital.

Expectation value of two-body interaction operators

Consider the following two-body interaction potential:

Ŵ =
1

2

N∑
i ̸=j

W (xi, xj). (112)

Here, the interaction potential W (xi, xj) is assumed to satisfy W (xi, xj) =W (xj , xi).

Using a Slater determinant, the expectation value of Ŵ can be evaluated as follows:

⟨W ⟩ =
∫
dx1 · · · dxN Φ∗(x1, · · · , xN )ŴΦ(x1, · · · , xN )

=
1

2

∑
l ̸=m

∫
dx1 · · · dxNΦ∗(x1, · · · , xN )W (xl, xm)Φ(x1, · · · , xN )

=
N(N − 1)

2

∫
dx1 · · · dxNΦ∗(x1, · · · , xN )W (x1, x2)Φ(x1, · · · , xN )

=
N(N − 1)

N !

∑
σ,τ

sgn(σ)sgn(τ)

∫
dx1

∫
dx2 ϕ

∗
τ(1)(x1)ϕ

∗
τ(2)(x2)W (x1, x2)ϕσ(1)(x1)ϕσ(2)(x2)

×
∫
dx3 · · · dxN

N∏
j=3

ϕ∗τ(j)(xj)ϕσ(j)(xj)

=
1

2

∑
jk

∫
dxdx′ |ϕj(x)|2 |ϕk(x′)|

2
W (x, x′)− 1

2

∑
jk

∫
dxdx′ϕ∗j (x)ϕ

∗
k(x

′)W (x, x′)ϕk(x)ϕj(x
′)

=
1

2

∫
dxdx′ρ(x)ρ(x′)W (x, x′)− 1

2

∫
dxdx′ρ(x, x′)ρ(x′, x)W (x, x′). (113)

Here, the one-body density ρ(x) and the one-body reduced density matrix ρ(x, x′) are defined
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as follows:

ρ(x) =
N
∫
dx2 · · · dxN |Φ(x, x2, · · · , xN )|2∫

dx1 · · · dxN |Φ(x1, x2, · · · , xN )|2
=

N∑
j=1

|ϕj(x)|2 , (114)

ρ(x, x′) =
N
∫
dx2 · · · dxNΦ(x, x2, · · · , xN )Φ∗(x′, x2, · · · , xN )∫

dx1 · · · dxN |Φ(x1, x2, · · · , xN )|2
=

N∑
j=1

ϕj(x)ϕ
∗
j (x

′). (115)

Regarding the expectation value of the two-body interaction calculated using the Slater determi-
nant, the first term on the right-hand side of Eq. (113) is called the direct term or Hartree energy.
The second term is called the exchange term or exchange energy.

3.8.2 Hartree–Fock equation

Let us consider minimizing the expectation value of the energy of a many-body system using
the variational method, with the Slater determinant as the trial wavefunction. For a concrete
calculation, let us consider the Hamiltonian of a many-body system as follows:

Ĥ =

N∑
j=1

ĥ(xj) +
1

2

N∑
i ̸=j

W (xi, xj). (116)

Here, the interaction potential W (xi, xj) is assumed to satisfy W (xi, xj) =W (xj , xi).
Evaluating the expectation value of the Hamiltonian in Eq. (116) using the Slater determinant

Φ(x1, · · · , xN ) composed of N orthonormal single-particle orbitals {ϕj(x)} yields the following:

E =

∫
dx1 · · · dxNΦ∗(x1, · · · , xN )ĤΦ(x1, · · · , xN )∫
dx1 · · · dxNΦ∗(x1, · · · , xN )Φ(x1, · · · , xN )

=

N∑
j

∫
dxϕ∗j (x)ĥ(x)ϕj(x) +

1

2

∫
dxdx′ρ(x)ρ(x′)W (x, x′)− 1

2

∫
dxdx′ρ(x, x′)ρ(x′, x)W (x, x′).

(117)

When the Slater determinant Φ(x1, · · · , xN ) minimizes the energy in Eq. (117), the first-order
term of the energy variation δE must vanish when a small change is made to each single-particle
orbital. For example, when the k-th orbital ϕk(x) is varied as ϕk(x) + δϕk(x), the first-order
term in δϕk(x) in the variation of the energy expectation value must be zero. Based on this
requirement, one can derive the equations that each orbital must satisfy. However, note that the
expression in Eq. (117) assumes that each orbital is normalized and orthogonal to the others, so
the orbitals {ϕk(x)} cannot be varied freely. For such a constrained minimization problem, one
can use the method of Lagrange multipliers2. Instead of minimizing the energy expectation value
E, we consider minimizing the following quantity:

L = E −
N∑

m=1

εmm

(∫
dx|ϕm(x)|2 − 1

)

−
N∑

m=1

m−1∑
n=1

εRmn

∫
dx [ϕ∗m(x)ϕn(x) + ϕm(x)ϕ∗n(x)]

−
N∑

m=1

m−1∑
n=1

iεImn

∫
dx [ϕ∗m(x)ϕn(x)− ϕm(x)ϕ∗ ∗ n(x)] . (118)

2When deriving the Hartree–Fock equation in Eq. (88), the normalization factors were treated explicitly, so the
equation was derived without using constraint conditions. In this case as well, one could treat the normalization
factors explicitly and avoid constrained minimization, but using the method of Lagrange multipliers gives better
clarity because the calculations would otherwise become complicated.
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Here, εmm, εRmn, and ε
I
mn are Lagrange multipliers, which are real numbers introduced to satisfy

the orthonormality conditions of the orbitals. Also note that constraint conditions are imposed
on both the real and imaginary parts of the inner products of the orbitals.

The equation that each orbital must satisfy is derived from the condition that the functional
derivative of L with respect to each orbital {ϕk(x)} vanishes. Evaluating the functional derivative
with respect to the k-th orbital ϕk(x) gives the following expression:

δL

δϕ∗k(x)
=

δE

δϕ∗k(x)
− εkkϕk(x)

−
k−1∑
n=1

εRknϕn(x)−
N∑

m=k+1

εRmkϕm(x)−
k−1∑
n=1

iεIknϕn(x) +

N∑
m=k+1

iεImkϕm(x). (119)

Now, the Lagrange multipliers εRmn and εImn were defined only for m > n. For the case where
m < n, let us introduce the following new notation:

εRmn = εRnm, (120)

εImn = −εInm. (121)

Furthermore, let us introduce the following complex number εmn:

εmn = εRmn + iεImn. (122)

From the definition, it is clear that ε∗mn = εnm holds.
By introducing the complex constants εmn in this way, we can rewrite Eq. (119) and express

the functional derivative of L as follows:

δL

δϕ∗k(x)
=

δE

δϕ∗k(x)
−

N∑
m=1

εkmϕm(x)

=

[
ĥ(x) +

∫
dx′ρ(x′)W (x, x′) + V̂F

]
ϕk(x)−

N∑
m=1

εkmϕm(x). (123)

Here, the operator V̂F is called the Fock operator, and is defined as follows:

V̂Fϕ(x) = −
∫
dx′ρ(x, x′)W (x, x′)ϕ(x′). (124)

Ultimately, from the condition that Eq. (123) vanishes, the equation that ϕk(x) must satisfy
is given as follows: [

ĥ(x) +

∫
dx′ρ(x′)W (x, x′) + V̂F

]
ϕk(x) =

N∑
m=1

εkmϕm(x). (125)

The Slater determinant remains invariant under the following arbitrary unitary transformation:

ϕk(x) =

N∑
m=1

Ukmϕ̃m(x). (126)

Here, Ukm is the (k,m) matrix element of an arbitrary unitary matrix U . Let us consider using
this arbitrariness to rewrite the equation in a more convenient form.

Let the (n, k) matrix element of the inverse of the unitary matrix U be denoted by
(
U−1

)
nk
,

and consider multiplying both sides of Eq. (125) by
(
U−1

)
nk

and summing over k. This yields
the following equation:

N∑
k=1

(
U−1

)
nk

[
ĥ(x) +

∫
dx′ρ(x′)V (x, x′) + V̂F

]
ϕk(x) =

N∑
k=1

(
U−1

)
nk

N∑
m=1

εkmϕm(x). (127)
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Furthermore, by substituting the unitary transformation of Eq. (126), we obtain:[
ĥ(x) +

∫
dx′ρ(x′)V (x, x′) + V̂F

]
ϕ̃n(x) =

N∑
k=1

(
U−1

)
nk

N∑
m=1

εkm

N∑
l=1

Umlϕ̃l. (128)

Since the Slater determinant is invariant under any unitary transformation such as Eq. (126),
the unitary matrix U can be chosen freely without affecting the result. Therefore, we choose the
unitary matrix U so that it diagonalizes the Hermitian matrix K, whose matrix elements are εmn.
That is,

U−1KU =



ε1

ε2 0
. . .

0 . . .

εN


(129)

so that U is chosen accordingly. Here, εk are the eigenvalues of the Hermitian matrix K.
By rewriting ϕ̃k(x) as ϕk(x), we ultimately arrive at the following equation that the single-

particle orbital ϕk(x) must satisfy:[
ĥ(x) +

∫
dx′ρ(x′)V (x, x′) + V̂F

]
ϕk(x) = εkϕk(x). (130)

This equation is known as the Hartree–Fock equation. While originally dealing with a many-body
problem, Eq. (130) takes a form similar to a single-particle Schrödinger equation. At this point,
the Hamiltonian governing the motion of a single-particle orbital consists of the original one-body
Hamiltonian ĥ(x), along with the classical potential (Hartree potential) created by the particle
density ρ(x), ∫

dx′ρ(x′)V (x, x′), (131)

and the Fock operator V̂F arising from the antisymmetry of fermions, which are included as poten-
tials. In this way, the effects of other particles are incorporated as an ”average one-body potential,”
and such an approximation is sometimes referred to as the mean-field approximation.
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4 Heavier atoms

In this section, we investigate the ground states of atoms heavier than the helium atom. Although
such problems can also be studied using the Hartree–Fock equations discussed in the previous
section, here we examine atomic ground states using density functional theory (DFT), which is
widely used in recent condensed matter physics property calculations.

4.1 Density functional theory

Before specifically examining atomic ground states, let us explain the basics of DFT.

4.1.1 Kato’s Theorem

Before considering DFT, let us examine an N -electron system under the influence of the Coulomb
potential from atomic nuclei. Such anN -electron system is described by the following Hamiltonian:

Ĥ =

N∑
j=1

[
p2
j

2me
−
∑
a

e2

4πε0

Za

|rj −Ra|

]
+

1

2

∑
i ̸=j

1

4πε0

e2

|ri − rj |
+

1

2

∑
a ̸=b

1

4πε0

e2ZaZb

|Ra −Rb|
, (132)

where Za and Ra represent the charge and position of the a-th nucleus.
Given the number of electrons N and the charges and positions of the nuclei {Za,Ra}, the

Hamiltonian of the multi-electron system is determined. Furthermore, by solving the Schrödinger
equation for that Hamiltonian, we can obtain the ground state wave function Ψgs(r1, sz,1, · · · , rN , sz,N ),
from which the electron density can be obtained as follows:

ρ(r) = N
∑

sz,1,··· ,sz,N

∫
dr2 · · · rN |Ψgs(r, sz,1, · · · , rN , sz,N )|2 . (133)

Therefore, given the number of electrons N and the nuclear charges and positions {Za,Ra}, the
ground state electron density ρ(r) is determined.

Now, for a given electronic system, if the ground state electron density ρ(r) is provided, is it
possible to determine the number of electrons N and the nuclear charges and positions {Za,Ra}
from just the information in ρ(r)? This is indeed possible and is known as Kato’s theorem [5].
Let us now see specifically how to extract the number of electrons N and the nuclear charges and
positions {Za,Ra} from the information in ρ(r).

The simplest quantity is the number of electrons N , which can be obtained by integrating the
given electron density ρ(r) over all space:

N =

∫
drρ(r). (134)

Next, to determine the positions of the atomic nuclei Ra from the electron density, let us revisit
the wave function of the hydrogen 1s orbital. The wave function of the hydrogen 1s orbital, such
as in Eq. (15), is known to have a sharp structure (cusp) at the position of the nucleus. When
the kinetic energy operator acts on such a wave function with a cusp, it exhibits a divergence
at the cusp point. This positive divergence from the kinetic energy operator is canceled by the
divergence of the Coulomb potential at the position of the nucleus, resulting in the 1s orbital wave
function being an eigenstate of the Schrödinger equation for the hydrogen atom. Thus, since the
Coulomb potential diverges at the positions of the nuclei, the wave function has a cusp to cancel
this divergence, and such a sharp structure also appears in the electron density. Therefore, by
exploring the positions of the cusps in the electron density, one can determine the positions of the
nuclei Ra in the system.

Furthermore, the sharpness of the electron density at a point allows us to determine the nuclear
charge at that point. Specifically, the following relation holds:

Za

a0
= − 1

2ρ(r)

dρ(r)

dr

∣∣∣
r→Ra

. (135)
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Therefore, if the ground-state electron density ρ(r) is known, the number of electronsN and the
positions and charges of the nucleiRa, Za can be determined. Furthermore, using this information,
the Hamiltonian in Eq. (132) can be specified, and by solving the Schrödinger equation, the
ground-state wave function can be obtained. In an N -electron many-body system composed of
nuclei and electrons, the ground-state wave function is a functional of the ground-state electron
density: Ψgs [ρ(r

′)] (r1, sz,1, · · · , rN , sz,N ). This implies that the expectation value of any physical
quantity in the ground state is a functional of the ground-state electron density.

4.1.2 The First Hohenberg–Kohn theorem

In the previous section, we discussed the motion of electrons confined by the Coulomb potential
created by atomic nuclei. Here, we consider a more general case of many-particle systems under
the influence of a one-body potential. Specifically, let us consider the following Hamiltonian:

Ĥ =
N∑
j=1

[
p2
j

2me
+ v(rj)

]
+

1

2

∑
i ̸=j

w(|ri − rj |), (136)

where v(r) is a one-body potential, and w(|r|) is a two-particle interaction potential.
Here, we consider a many-particle system with a given interaction potential w(|r|). When

a one-body potential v(r) is given, we can solve the Schrödinger equation corresponding to the
Hamiltonian in Eq. (136) to obtain the ground-state wave function Ψgs(r1, sz,1, · · · , rN , sz,N ) and
the ground-state particle density n(r). Now, if the ground-state particle density n(r) is given, can
we uniquely determine the one-body potential v(r) that yields that ground state? The answer to
this question is given by the first Hohenberg–Kohn theorem.

The first Hohenberg–Kohn theorem states that, for the Hamiltonian in Eq. (136), there is a one-
to-one correspondence between the one-body potential v(r) and the ground-state particle density
n(r). However, potentials that differ only by an additive constant c are physically equivalent, as
they merely shift the reference point of the energy, and are therefore considered the same potential.

To consider the one-to-one correspondence between the one-body potential v(r) and the
ground-state particle density n(r), let us examine the mapping f : v(r) → n(r). This map-
ping f assigns a specific n(r) to each given one-body potential v(r). This mapping can be realized
by solving the Schrödinger equation with the Hamiltonian (Eq. 136) that includes the potential
v(r), and then evaluating the resulting density. Thus, the nontrivial aspect of the one-to-one cor-
respondence lies in whether the inverse mapping f−1 : v(r)← n(r) exists. Hohenberg and Kohn
assumed that the ground state of the Hamiltonian in Eq. (136) is non-degenerate and demonstrated
the existence of this inverse mapping as follows.

Here, we use proof by contradiction to show that “given a ground-state density n(r), there is
a unique one-body potential v(r).” For this, let us assume that “there exist different potentials
v(r) and v′(r) that yield the same ground-state density n(r).” Furthermore, let us denote the
Hamiltonian constructed from v(r) as Ĥ, and that from v′(r) as Ĥ ′. Let the ground-state wave
function and energy of Ĥ be |Ψ⟩ and E, and those of Ĥ ′ be |Ψ′⟩ and E′.

At this point, the variational principle gives the following relation:

E = ⟨Ψ|Ĥ|Ψ⟩ < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩ = E′ +

∫
dr n(r) [v(r)− v′(r)] .

(137)

Furthermore, the variational principle also gives the following relation:

E′ = ⟨Ψ′|Ĥ ′|Ψ′⟩ < ⟨Ψ|Ĥ ′|Ψ⟩ = ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩ = E +

∫
dr n(r) [v′(r)− v(r)] . (138)

Here, adding both sides of Eq. (137) and Eq. (138) gives the following relation:

E + E′ < E + E′. (139)
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This is clearly a contradiction. Therefore, the assumption that ”there exist different potentials
v(r) and v′(r) that yield the same ground state density n(r)” must be incorrect. In other words,
it has been shown that ”when a ground state density n(r) is given, the external potential v(r) is
uniquely determined.”

4.1.3 The Second Hohenberg–Kohn Theorem

In the previous section, we discussed the first Hohenberg–Kohn theorem, which states that there
is a one-to-one correspondence between the external potential v(r) and the ground-state density
n(r). This theorem tells us that if the ground-state density n(r) is given, then the external
potential v(r) is uniquely determined. Therefore, it follows that the external potential v(r) is
a functional of the ground-state density: v[n(r′)](r). Furthermore, since the ground state can
be obtained by solving the Schrödinger equation for the Hamiltonian with this external potential
v[n(r′)](r), the ground-state wave function |Ψgs[n(r)]⟩ and the energy E[n(r)] are also functionals
of the ground-state density n(r). Hence, all physical quantities of the system are functionals of
the ground-state density of the system.

Then, we consider the Hamiltonian Ĥ of Eq. (136) with a certain external potential v(r), and
the corresponding ground-state wave function |Ψgs⟩, energy Egs, and density n(r). Also, let ρ(r)
be the ground-state density obtained using certain external potential ṽ(r) in Eq. (136). Here,
ṽ(r) and ρ(r) may or may not coincide with v(r) and n(r). Furthermore, according to the above
discussion, the wave function that has ρ(r) as its ground-state density can be expressed as a
functional of ρ(r), namely |Ψ̃gs [ρ(r)]⟩.

Here, by explicitly indicating the dependence on the external potential v(r), we introduce the
following energy functional:

Ev[ρ(r)] = ⟨Ψ̃gs [ρ(r)] |Ĥ|Ψ̃gs [ρ(r)]⟩. (140)

By the variational principle applied to the wavefunction, the following second Hohenberg–
Kohn theorem immediately holds:

Ev[ρ(r)] ≥ Ev[n(r)] = Egs. (141)

Here, note that n(r) is the ground-state density corresponding to the external potential v(r).
From Eq. (141), it follows that the energy functional Ev[ρ(r)] can never be less than the

ground-state energy Egs of the Hamiltonian Ĥ constructed from the external potential v(r), for

any ρ(r). Moreover, the minimum value of Ev[ρ(r)] is the ground-state energy Egs of Ĥ, and the
only density that gives this value is ρ(r) = n(r).

Thanks to the second Hohenberg–Kohn theorem, it becomes possible to adopt a variational
principle that minimizes the energy functional in order to find the true ground-state density. Even
in practical DFT calculations, finding the density that minimizes the energy functional constitutes
the main computational cost of DFT calculations.

To examine the energy functional in Eq. (140) more closely, consider writing the Hamiltonian
Ĥ as

Ev[ρ(r)] = ⟨Ψ̃gs [ρ(r)] |V̂ |Ψ̃gs [ρ(r)]⟩+ ⟨Ψ̃gs [ρ(r)] |T̂ + Ŵ |Ψ̃gs [ρ(r)]⟩

=

∫
dr v(r) ρ(r) + ⟨Ψ̃gs [ρ(r)] |T̂ + Ŵ |Ψgs [ρ(r)]⟩

=

∫
dr v(r) ρ(r) + FHK [ρ(r)] , (142)

where V̂ is the one-body potential, T̂ is the kinetic energy, and Ŵ is the two-body interaction
potential.

Here, the energy functional Ev[ρ(r)] is seen to consist of a term that depends on the one-body
potential v(r) and a term that does not:

FHK [ρ(r)] = ⟨Ψ̃gs [ρ(r)] |T̂ + Ŵ |Ψ̃gs [ρ(r)]⟩. (143)

34



Since FHK [ρ(r)] does not depend on the one-body potential (i.e., it is system-independent), it
is called the universal functional. In principle, if this universal functional were known in an
explicit form, one could investigate the ground state of any system (any v(r)) by minimizing the
energy functional in Eq. (142). However, in practice, it is difficult to determine the universal
functional FHK [ρ(r)] explicitly, and practical calculations are performed using various approxi-
mations. Hence, the accuracy of DFT calculations significantly depends on the approximation of
exchange-correlation functionals.

4.1.4 Kohn–Sham Method

In addition to the difficulty of explicitly determining the universal functional FHK [ρ(r)], it is also
not easy to construct an accurate approximate functional. In particular, describing the kinetic
energy term of the universal functional in terms of the density is not straightforward3.

Kohn and Sham proposed a method to evaluate this kinetic energy term by introducing a non-
interacting fictitious system (the Kohn–Sham system). This method, known as the Kohn–Sham
method, has become the foundation for practical DFT calculations.

To discuss the Kohn–Sham method, let us first introduce a non-interacting fictitious particle
system called the Kohn–Sham system. The original many-body problem of interest was described
by the Hamiltonian of an interacting many-body system given by Eq. (136). In contrast, let us
consider the Hamiltonian Ĥs of the non-interacting particle system as follows:

Ĥs =

N∑
j=1

[
p2
j

2me
+ vs(rj)

]
. (144)

Let us denote the ground-state density of the Kohn–Sham system by ρ(r), the first Hohenberg–
Kohn theorem guarantees a one-to-one correspondence between vs(r) and ρ(r). Furthermore,
the ground-state wavefunction |Φs[ρ(r)]⟩ of Ĥs is a functional of ρ(r). Using the ground state
wavefunction of the Kohn–Sham system |Φs[ρ(r)]⟩ introduced in this way, let us rewrite the
universal functional FHK [ρ(r)] as follows:

FHK [ρ(r)] = ⟨Ψ̃gs [ρ(r)] |T̂ + Ŵ |Ψ̃gs [ρ(r)]⟩

= ⟨Φs [ρ(r)] |T̂ |Φs [ρ(r)]⟩+
1

2

∫
drdr′ρ(r)ρ(r′)w(|r − r′|) + Exc [ρ(r)] . (145)

Here, the first term on the right-hand side is the kinetic energy of the Kohn–Sham system, the
second term is the Hartree energy, and the third term is a quantity called the exchange-correlation
energy Exc[ρ(r)]. This exchange-correlation energy is introduced as the term that accounts for all
the energy not captured by the first and second terms. Hence, the exchange-correlation energy is
defined by

Exc [ρ(r)] = FHK [ρ(r)]− ⟨Φs [ρ(r)] |T̂ |Φs [ρ(r)]⟩ −
1

2

∫
drdr′ρ(r)ρ(r′)w(|r − r′|). (146)

Up to this point, we have introduced the Kohn–Sham system and rewritten the universal
functional FKS [ρ(r)] in the form of Eq. (145). Note that no approximations have been used in the
discussion so far. In other words, Eq. (145) still represents an exact universal functional. Just as we
did not know the explicit expression for FKS [ρ(r)], we still do not know the explicit expression for
Exc [ρ(r)], and for practical calculations, it is necessary to approximate this exchange-correlation
energy functional.

By rewriting the universal functional FKS [ρ(r)] using the Kohn–Sham system, the kinetic
energy term within the universal functional FKS [ρ(r)] can be approximately, yet accurately, eval-
uated using the wavefunction of the Kohn–Sham system. Furthermore, by explicitly writing out
the Hartree energy term in addition to the kinetic energy, it becomes possible to isolate the

3For example, see Chapter 6 of [1].
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majority of contributions in FKS [ρ(r)], and the remaining relatively small correction term is in-
troduced as the unknown exchange-correlation functional Exc [ρ(r)]. Through this decomposition
of the energy functional, it becomes feasible to develop approximations and corrections for the
exchange-correlation functional, which has relatively small contributions, thereby establishing the
foundation for DFT calculations to achieve practical computational accuracy.

Here, we derive the fundamental equation of DFT calculations using the Kohn–Sham method,
known as the Kohn–Sham equation. Noting that the Kohn–Sham system is a non-interacting
system, its ground state wavefunction |Φs[ρ(r)]⟩ can be written as a Slater determinant composed
of orthonormal single-particle orbitals {ϕk(r)χk(sz)}. These single-particle orbitals are referred to
as Kohn–Sham orbitals. The energy functional in Eq. (140) can be rewritten using the Kohn–Sham
method as follows:

Ev[ρ(r)] =

∫
drv(r)ρ(r) + FHK [ρ(r)]

=

∫
drv(r)ρ(r) +

∫
drϕ∗k(r)

−h̄2

2m
∇2ϕk(r) +

1

2

∫
drdr′ρ(r)ρ(r′)w(|r − r′|) + Exc [ρ(r)] .

(147)

Here, by the definition of the Kohn–Sham system, the density ρ(r) is given as:

ρ(r) =

N∑
k=1

|ϕk(r)|2 . (148)

Furthermore, let us derive the equation that the Kohn–Sham orbitals must satisfy using the
variational principle. Just as we introduced the Hartree–Fock equation in Sec. 3.8.2, we consider
the problem of minimizing the energy under the constraint that the Kohn–Sham orbitals are
orthonormal. Using the method of Lagrange multipliers, it is found that the following quantity L
should be minimized:

L = Ev[ρ(r)]−
N∑
mn

λmn

(∫
drϕ∗m(r)ϕn(r)

∑
sz

χ∗
m(sz)χn(sz)− δmn

)
. (149)

Here, evaluating the functional derivative of L with respect to the Kohn–Sham orbitals yields
the following:

δL

δϕ∗k(r)
=

[
− h̄2

2m
∇2 + v(r) +

∫
dr′ρ(r′)w(|r − r′|) + δExc [ρ(r)]

δρ(r)

]
ϕk(r)−

∑
m

εkmϕm(r). (150)

Here, the complex number εmn is introduced as εmn = λmn

∑
sz
χ∗
m(sz)χn(sz).

When the Kohn–Sham orbitals minimize L, this functional derivative becomes zero. Therefore,
the Kohn–Sham orbitals satisfy the following equation:[

− h̄2

2m
∇2 + v(r) +

∫
dr′ρ(r′)w(|r − r′|) + δExc [ρ(r)]

δρ(r)

]
ϕk(r) =

∑
m

εkmϕm(r). (151)

Since the Slater determinant is invariant under unitary transformations of the orbitals, this
arbitrariness allows the diagonalization of εmn

4. As a result, the Kohn–Sham orbitals satisfy the
following equation:[

− h̄2

2m
∇2 + v(r) +

∫
dr′ρ(r′)w(|r − r′|) + vxc [ρ(r)] (r)

]
ϕk(r) = εkϕk(r). (152)

4For details, refer to the derivation of the Hartree–Fock equations in Section 3.8.2.
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This equation is called the Kohn–Sham equation and is the fundamental equation of density
functional theory. Also, vxc[ρ(r)](r) is called the exchange-correlation potential, and it is defined
by

vxc[ρ(r)](r) =
δExc [ρ(r)]

δρ(r)
. (153)

Since the explicit form of the exact exchange-correlation functional Exc [ρ(r)] is not known,
it is necessary to approximate Exc [ρ(r)] in order to carry out practical DFT calculations. At
present, various approximate exchange-correlation functionals have been developed, offering a
range of choices depending on the trade-off between approximation accuracy and computational
cost. Here, we introduce the simplest approximation, known as the local density approximation
(LDA).

The exchange-correlation functional is often written as the sum of the exchange energy and
the correlation energy:

Exc [ρ(r)] = Ex [ρ(r)] + Ec [ρ(r)] . (154)

The exchange energy Ex [ρ(r)] corresponds to the exchange energy in Eq. (113), while the corre-
lation energy Ec [ρ(r)] corresponds to the remaining energy.

To consider the local density approximation, let us first examine the problem of a uniform
electron gas. We consider an N -electron system confined within a region of volume V . Further-
more, we examine the limit in which both the volume V and the number of particles N approach
infinity while keeping the particle number density ρ = N/V fixed. To ensure charge neutrality of
the system, a uniform positive charge density eρ is assumed to be spread throughout the volume
V . As the volume V of the system increases, the volume corresponding to the surface becomes
relatively small. In the limit where the volume becomes infinite, the contribution of the surface
region to physical quantities becomes negligible. Under these conditions, the energy per unit
volume ε = E/V becomes a quantity that depends only on the density ρ.

Applying the Hartree–Fock approximation discussed in Sec. 3.8.2 to such a uniform electron
gas system, the energy density per unit volume can be evaluated as follows 5:

εHF (ρ) =
3

5

h̄2

2me
(3π)

3
2 ρ

5
3 − e2

4πε0

3

4

(
3

π

) 1
3

ρ
4
3 . (155)

Here, the first term represents the contribution from the kinetic energy of the electrons, and the
second term represents the contribution from the exchange energy. Moreover, the contribution
of the direct term (Hartree term) cancels out due to the electrostatic potential arising from the
background positive charge and thus becomes zero. In a uniform electron gas, the only parameter
characterizing the system is the electron density ρ, and physical quantities such as the energy
density become functions solely of ρ.

Here, let us introduce the local density approximation for the exchange energy functional
Ex[ρ(r)]. Using the expression for the exchange energy in the second term of Eq. (155), we
introduce the following approximate exchange energy functional:

ELDA
x [ρ(r)] =

∫
drεLDA

x (ρ(r)) , (156)

εLDA
x (ρ(r)) = − e2

4πε0

3

4

(
3

π

) 1
3

ρ
4
3 (r). (157)

This means that the exchange energy density is evaluated at each point in space using the electron
density ρ(r) at that point, based on the expression for the exchange energy density of a free electron
gas, and then summed over all space. This kind of approximation, in which the energy is evaluated

5For example, detailed calculations are described in [2]
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locally using the density at each point in space, is called the Local Density Approximation (LDA).
Moreover, the exchange potential vLDA

x (r) corresponding to the exchange energy functional in
Eq. (156) is obtained as follows:

vLDA
x (r) =

δELDA
x [ρ(r)]

δρ(r)
= − e2

4πε0

(
3

π

) 1
3

ρ
1
3 (r). (158)

Let us also briefly discuss the local density approximation for the correlation-energy functional.
In the above discussion, the energy density of a free electron gas was evaluated using the Hartree–
Fock approximation. However, there is, of course, a difference between the exact energy of the
electron gas and the energy given by the Hartree–Fock approximation. This difference in energy
between the Hartree–Fock approximation and the exact calculation is called the correlation
energy or electron correlation. The correlation energy functional is the energy term introduced
to account for this electron correlation.

Although it is difficult to analytically determine the exact ground-state energy density of a free
electron gas, it is possible to obtain it numerically using methods such as Monte Carlo simulations.
When the exact ground-state energy density obtained in this way is denoted as εHEG

exact(ρ), the
correlation energy density of the free electron gas is given by

εHEG
c (ρ) = εHEG

exact(ρ)− εHF (ρ) (159)

If such a density dependence is provided, the local density approximation of the correlation energy
functional is given by

ELDA
c [ρ(r)] =

∫
drεLDA

c (ρ(r)) , (160)

εLDA
c (ρ(r)) = εHEG

c (ρ(r)) (161)

Expressions for specific local density approximations of the correlation functional can be found,
for example, in Ref. [3].

4.2 Numerical solution of the Kohn–Sham equation assuming spherical
symmetry

Let us now move on to a numerical calculation to investigate the ground state of an atom using
the density functional theory introduced in the previous section. When the exchange-correlation
potential vxc(r) is given, the Kohn–Sham equation to be solved is expressed as follows.[

− h̄2

2m
∇2 − e2

4πε0

Z

r
+ vH(r) + vxc(r)

]
ϕk(r) = εkϕk(r). (162)

Here, the Hartree potential vH(r) is defined by the following expression.

vH(r) =
e2

4πε0

∫
dr′

ρ(r′)

|r − r′|
. (163)

When vH(r) and vxc(r) possess spherical symmetry, it is possible to assume a solution of the
following form, as in the numerical calculations for the hydrogen and helium atoms.

ϕk(r) =
χk,l(r)

r
Ylm(θ, ϕ). (164)

The radial wave function χk,l(r) introduced in this manner satisfies the following radial Kohn–
Sham equation.[

− h̄2

2m

d2

dr2
− e2

4πε0

Z

r
+
h̄2

2m

l(l + 1)

r2
+ vH(r) + vxc(r)

]
χk,l(r) = εk,lχk,l(r). (165)
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This kind of eigenvalue equation can be solved using the shooting method introduced in Sec-
tion 2.2.3.

By the way, it is not at all clear whether vH(r) and vxc(r) appearing in Eq. (162) are spherically
symmetric. In fact, when the Kohn–Sham equation [Eq. (162)] is solved self-consistently using the
local density approximation, the spherical symmetry of the density ρ(r), vH(r), and vxc(r) may
be broken for open-shell atoms. On the other hand, for closed-shell atoms such as noble gases,
even in calculations that do not explicitly assume spherical symmetry, solutions with spherical
symmetry are automatically obtained as a result of the computation.

Before explaining why symmetry may be broken in open-shell systems, let us explain why
spherically symmetric solutions can be obtained in closed-shell systems. Suppose that in a certain
closed-shell atom, the orbital angular momentum quantum number of the outermost electrons is l.
In this case, the orbitals are (2l+1)-fold degenerate, and all orbitals are equally occupied. Under
such conditions, when the density is evaluated as follows, the properties of spherical harmonics
yield a spherically symmetric density.

ρkl(r) =

l∑
m=−l

∣∣∣∣χkl(r)

r

∣∣∣∣2 |Ylm(θ, ϕ)|2 =
2l + 1

4π

∣∣∣∣χkl(r)

r

∣∣∣∣2 = ρ(r). (166)

Here, the property of spherical harmonics6

l∑
m=−l

|Ylm(θ, ϕ)|2 =
2l + 1

4π
(167)

was used.
In such cases, the fact that the (2l+1) degenerate orbitals are occupied with equal occupancy

plays an important role in producing a spherically symmetric density. On the other hand, an
open-shell atom is a system in which only some of the 2l + 1 outermost orbitals are occupied. In
such a system, since the spherical harmonics Ylm(θ, ϕ) with different magnetic quantum numbers
m are occupied with different weights, the symmetry breaks when summed, and the spherical
symmetry of the density is lost.

Such symmetry breaking arises from the mean-field approximation, but here we proceed with
the calculation by explicitly imposing spherical symmetry to simplify the computation. Specif-
ically, we assume that the degenerate 2l + 1 orbitals are each occupied by an equal number of
electrons. For example, a carbon atom is an electron many-body system with six electrons, and
by considering spin degeneracy, we can regard it as an atom in which the 1s orbital holds two
electrons, the 2s orbital holds two electrons, and the 2p orbital holds two electrons. In this case,
the 2p orbital is open-shell, but by allowing fractional occupation numbers, we assume that the
three orbitals with m = +1, 0,−1 are each occupied by 2/3 of an electron. In such a situation,
the electron density can be calculated to yield the following expression:

ρ(r) = 2

∣∣∣∣χ1s(r)

r

∣∣∣∣2 |Y00(θ, ϕ)|2 + 2

∣∣∣∣χ2s(r)

r

∣∣∣∣2 |Y00(θ, ϕ)|2
+

2

3

∣∣∣∣χ2p(r)

r

∣∣∣∣2 |Y1,1(θ, ϕ)|2 + 2

3

∣∣∣∣χ2p(r)

r

∣∣∣∣2 |Y1,0(θ, ϕ)|2 + 2

3

∣∣∣∣χ2p(r)

r

∣∣∣∣2 |Y1,−11(θ, ϕ)|2

=
2

4π

∣∣∣∣χ1s(r)

r

∣∣∣∣2 + 2

4π

∣∣∣∣χ2s(r)

r

∣∣∣∣2 + 2

4π

∣∣∣∣χ2p(r)

r

∣∣∣∣2 = ρ(r). (168)

By allowing such rational occupation numbers, it becomes possible to maintain spherical sym-
metry in the density. Moreover, the potentials vH(r) and vxc(r), which are constructed from the
spherically symmetric density, are also spherically symmetric.

6See, for example, Ref. [4].
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Finally, if we denote the occupation number of each introduced orbital by fk, the electron
density can be written as follows:

ρ(r) =
1

4π

∑
k

fk

∣∣∣∣χk,l(r)

r

∣∣∣∣2 . (169)

Also, let us introduce the following convenient expression for the total energy of the system:

Etot =

N∑
k=1

fk

∫
drϕ∗k(r)

[
− h̄2

2m
∇2 − e2Z

4πε0

1

r

]
ϕk(r) +

1

2

∫
drρ(r)vH(r) + Exc [ρ(r)]

=

N∑
k

fkεk −
∫
drρ(r) [vH(r) + vxc(r)] +

1

2

∫
drρ(r)vH(r) + Exc [ρ(r)] . (170)

Here, it is assumed that each Kohn–Sham orbital is a solution of the Kohn–Sham equation.
Combining the knowledge explained in the previous sections, it is possible to write a computa-

tional code to investigate the ground state of atoms. However, due to the increased complexity of
the problem compared to the helium atom, issues may arise where the self-consistent field (SCF)
calculation does not converge. As a countermeasure in such cases, let us introduce the linear
mixing method.

In the simple self-consistent field method, one constructs vH(r) and vxc(r) using a preliminarily
estimated density ρn(r), and calculates the Kohn–Sham orbitals by diagonalizing the Kohn–Sham
Hamiltonian composed of these potentials. Then, a new density ρnew(r) is obtained from the
resulting Kohn–Sham orbitals and used as the estimated density for the next iteration:

ρn+1(r) = ρnew(r). (171)

By repeating this sequence of steps, if one is lucky, the difference between the input density ρn(r)
and the output density ρnew(r) will become smaller with each iteration, eventually leading to
agreement between input and output, thereby achieving a self-consistent field.

However, this procedure does not necessarily converge. In particular, when the difference
between the input density ρn(r) and the output density ρnew(r) is large during a single update,
convergence often becomes difficult. To mitigate such problems, there is a method where the
estimated density ρn+1(r) used in the next iteration is made by mixing the previous density ρn(r)
and the new density ρnew(r) obtained from the new Kohn–Sham orbitals. For example, using a
constant α, the new estimated density can be formed as follows:

ρn+1(r) = αρnew(r) + (1− α)ρn(r). (172)

This method is called the simple mixing or linear mixing method. The larger the constant
α, the greater the mixing ratio of the new density, and the smaller the α, the greater the mixing
ratio of the old density.

Based on the explanation so far, let’s try writing your own code to perform density functional
theory (DFT) calculations for atoms, imposing spherical symmetry. For reference, Source code 4
shows an example of a DFT calculation code for atoms. In this example, the local density ap-
proximation is used for the exchange functional, and the correlation functional is approximated
as zero.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src/atom.

py

Source code 4: Example code for ground-state atomic calculation using the local density approxi-
mation

1 import numpy as np
2 from matplotlib import pyplot as plt
3
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4

5 def calc_atom_gs(orb_name , orb_occ , nscf , rmax , dr , zval):
6

7 num_orb , l_ang_mom , occupation , num_node = list_of_orbitals(orb_name , orb_occ)
8 num_grid = int(rmax/dr)+1
9 rj = np.linspace (0.0, rmax , num_grid)

10 phi = np.zeros((num_grid , num_orb))
11 rho_old = np.zeros(num_grid)
12 update_rate = 0.5
13

14 for iscf in range(nscf):
15

16 rho = calc_density(num_orb , phi , occupation)
17 rho = update_rate*rho + (1.0 - update_rate)*rho_old
18 rho_old = rho
19

20 vhxc , vh, vxc = calc_potential(rho , rj, dr, num_grid)
21 phi , epsilon_s = calc_wavefunction(rj, dr , num_grid , vhxc , zval , num_orb , l_ang_mom ,

num_node)
22

23 total_energy = calc_total_energy(rj, dr , num_grid , phi , epsilon_s , rho , num_orb , vhxc ,
vh, occupation)

24

25 print("iscf ,␣energy␣=",iscf , total_energy , "Hartree")
26

27 return num_orb , rj , phi , epsilon_s , total_energy
28

29 def calc_wavefunction(rj, dr, num_grid , vhxc , zval , num_orb , l_ang_mom , num_node):
30

31 phi = np.zeros((num_grid , num_orb))
32 epsilon_s = np.zeros(num_orb)
33

34 for iorb in range(num_orb):
35

36 phi_t , ene_t = shooting_method(rj, dr , num_grid , vhxc , zval , l_ang_mom[iorb], num_node[
iorb])

37 phi[:,iorb] = phi_t [:]
38 epsilon_s[iorb] = ene_t
39

40 return phi , epsilon_s
41

42

43 def list_of_orbitals(orb_name , orb_occ):
44 num_orb = len(orb_name)
45

46 l_ang_mom = np.zeros(num_orb)
47 occupation = np.zeros(num_orb)
48 num_node = np.zeros(num_orb , dtype=int)
49

50 num_node_s = 0
51 num_node_p = 0
52 num_node_d = 0
53 num_node_f = 0
54

55 for iorb in range(num_orb):
56 occupation[iorb] = orb_occ[iorb]
57 if(’s’ in orb_name[iorb].lower()):
58 l_ang_mom[iorb] = 0.0
59 num_node[iorb] = num_node_s
60 num_node_s = num_node_s + 1
61 elif(’p’ in orb_name[iorb].lower()):
62 l_ang_mom[iorb] = 1.0
63 num_node[iorb] = num_node_p
64 num_node_p = num_node_p + 1
65 elif(’d’ in orb_name[iorb].lower()):
66 l_ang_mom[iorb] = 2.0
67 num_node[iorb] = num_node_d
68 num_node_d = num_node_d + 1
69 elif(’f’ in orb_name[iorb].lower()):
70 l_ang_mom[iorb] = 3.0
71 num_node[iorb] = num_node_f
72 num_node_f = num_node_f + 1
73

74 return num_orb , l_ang_mom , occupation , num_node
75

76

77 def calc_density(num_orb , phi , occupation):
78

79 rho = np.zeros(phi.shape [0])
80 for iorb in range(num_orb):
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81 rho += occupation[iorb]*phi[:,iorb ]**2
82

83 return rho
84

85 def calc_potential(rho , rj , dr, num_grid):
86

87 vhxc = np.zeros(num_grid)
88 vh = np.zeros(num_grid)
89

90 for i in range(num_grid):
91

92 v1 = 0.0
93 for j in range(i):
94 v1 = v1 + rj[j]**2* rho[j]*dr
95

96 v1 = v1 + 0.5*rj[i]**2* rho[i]*dr
97 if(i == 0):
98 v1 = 0.0
99 else:

100 v1 = 4.0*np.pi*v1/rj[i]
101

102

103 v2 = 0.5*rj[i]*rho[i]*dr
104 for j in range(i+1, num_grid):
105 v2 = v2 + rj[j]*rho[j]*dr
106

107 v2 = 4.0*np.pi*v2
108

109 vh[i] = v1 + v2
110

111

112 vxc = -((3.0/np.pi)*rho)**(1.0/3.0)
113 vhxc = vh + vxc
114

115 return vhxc , vh, vxc
116

117

118

119 def shooting_method(rj , dr , num_grid , vhxc , zval , l_ang_mom_in , num_node_in):
120

121 ene_max = 0.1 * zval **2
122 ene_min = -0.6 * zval **2
123

124

125 for iter in range (100):
126 ene_t = 0.5 * (ene_max + ene_min)
127

128 chi , num_node_t = get_wavefunction(rj, dr , num_grid , vhxc , zval , ene_t , l_ang_mom_in)
129

130 if num_node_t >= num_node_in +1:
131 ene_max = ene_t
132 else:
133 ene_min = ene_t
134

135 if ene_max - ene_min < 1e-6:
136 break
137

138 ene_t = ene_max
139 chi , num_node_t = get_wavefunction(rj, dr , num_grid , vhxc , zval , ene_t , l_ang_mom_in)
140

141 # refine wavefunction
142 num_node_t = 0
143 for j in range(1, num_grid - 1):
144 if chi[j + 1] == 0.0:
145 num_node_t += 1
146 elif chi[j + 1] * chi[j] < 0.0:
147 num_node_t += 1
148

149 if num_node_t == num_node_in + 1:
150 chi[j+1:] = 0.0
151 break
152

153 norm = np.sum(chi **2)*dr
154 chi = chi/np.sqrt(norm)
155

156 phi_t = np.zeros(num_grid)
157 phi_t [1: num_grid -1] = chi[1: num_grid -1]/rj[1: num_grid -1]
158 phi_t [0] = 2*phi_t [1] - phi_t [2]
159 phi_t = phi_t /(np.sqrt (4.0* np.pi))
160

42



161

162 return phi_t , ene_t
163

164 def get_wavefunction(rj , dr, num_grid , vhxc , zval , energy , l_ang):
165

166 chi = np.zeros(num_grid)
167 num_node = 0
168

169

170 chi [0] = 0.0
171 chi [1] = dr / zval
172

173 factor = 2 * dr**2
174 for j in range(1, num_grid - 1):
175 potential = - zval / rj[j] + vhxc[j] + 0.5* l_ang*( l_ang +1.0)/rj[j]**2
176 chi[j + 1] = (
177 2 * chi[j] - chi[j - 1]
178 - factor * (energy - potential) * chi[j]
179 )
180

181 if chi[j+1] == 0.0:
182 num_node += 1
183 elif chi[j+1] * chi[j] < 0.0:
184 num_node += 1
185

186 return chi , num_node
187

188 def calc_total_energy(rj, dr, num_grid , phi , epsilon_s , rho , num_orb , vhxc , vh, occupation):
189 total_energy = np.sum(occupation*epsilon_s)
190 total_energy = total_energy - 4.0*np.pi*np.sum(rho*vhxc*rj**2)*dr
191 total_energy = total_energy + 0.5*4.0* np.pi*np.sum(rho*vh*rj**2)*dr
192 total_energy = total_energy - 4.0*np.pi *(3.0/4.0) *(3.0/ np.pi)**(1.0/3.0)*np.sum(rho

**(4.0/3.0)*rj**2)*dr
193

194 return total_energy
195

196

197 zval = 10.0
198 nscf = 30
199 rmax = 20.0
200 dr = 0.005
201

202 orb_name = [’1s’, ’2s’, ’2p’ ]
203 orb_occ = [2.0, 2.0, 6.0 ]
204

205

206 num_orb , rj, phi , epsilon_s , total_energy = calc_atom_gs(orb_name , orb_occ , nscf , rmax , dr,
zval)

207

208 # The conversion factor from Hartree to electronvolt (eV)
209 ev = 27.2114
210

211 print("Total␣energy␣=", total_energy , "Hartree", total_energy*ev, "eV")
212 print("Single␣particle␣energies")
213 for iorb in range(num_orb):
214 print(orb_name[iorb], ":", epsilon_s[iorb], "Hartree", epsilon_s[iorb]*ev , "eV")

By running the above Python code, one can compute the ground state of a Ne atom, but the
execution can take a significant amount of time. To perform the calculation more quickly, one can
accelerate it using Numba or write high-speed code in the Julia language.

The following URLs provide a Python code accelerated using Numba and a Julia code version
optimized for speed.

Python code using Numba
https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src/atom_numba.

py

Julia code
https://github.com/shunsuke-sato/python_qe/blob/develop/note_atom_dft/src_jl/atom.

jl
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4.3 ∆SCF method for calculating the ionization potential of atoms

As an application example of the atomic ground-state calculation code, let us evaluate the ioniza-
tion potential of atoms based on density functional theory. As discussed in the introduction, the
ionization potential of an atom is defined as the energy difference between the ground states of
the atom and its ion. Therefore, one can calculate the ground-state energies of the neutral atom
and the singly charged ion using the code developed in the previous section and then take their
difference. This method is called the ∆SCF method.

Let us calculate the ionization potential of atoms using the ∆SCF method and compare it with
experimental values. If necessary, the ionization potential values from the literature [CRC Hand-
book of Chemistry and Physics (84th edition)] are extracted on the following page and can be used:
https://en.wikipedia.org/wiki/Ionization_energies_of_the_elements_(data_page)

When actually calculating the ionization potential using the ∆SCF method, one will notice
that, despite the simplicity of the approximation used (such as the local density approximation),
it reproduces the experimental values with high accuracy. This result is achieved because the
errors contained in the ground states of the neutral atom and the ion cancel each other out (Error
cancelation) when calculating the energy difference using the ∆SCF method. In actual materials
calculations, simple approximations like the local density approximation are often insufficient. In
such cases, it becomes necessary to use more sophisticated approximate functionals.
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