
Introduction to quantum dynamics simulation with Python

Shunsuke A. Sato ∗

August 27, 2025

Contents

1 Getting Familiar with Python 4
1.1 Running Python . 4
1.2 Variable Types in Python . 4
1.3 Basic Mathematical Operations in Python . 5

2 Numerical Differentiation 7
2.1 Finite Difference Approximation and Forward Difference 7
2.2 Central Difference Formula and Accuracy of Finite Difference Approximation . . . 8
2.3 Numerical Differentiation of the Second Derivative 9

3 Numerical Integration 11
3.1 Trapezoidal Rule . 11

4 Solution of First-Order Ordinary Differential Equations 13
4.1 Euler Method . 13
4.2 Solution by Heun Method . 14
4.3 Solution by the Runge-–Kutta Method . 16

5 Solving Second-Order Ordinary Differential Equations 18

6 Quantum Dynamics Simulation in One Dimension 22
6.1 Real-Space Method . 22
6.2 Real-time method . 23

6.2.1 Speeding up Python code with Numba . 28
6.3 Creating a movie of one-dimensional quantum wave packet dynamics 29
6.4 Various Dynamics of One-Dimensional Quantum Wave Packets 31

6.4.1 Tunneling Phenomenon . 31
6.4.2 Coherent State in a Harmonic Potential . 31
6.4.3 Anharmonic Potential . 32
6.4.4 Harmonic Potential: Expectation Values of Position and Momentum, and

Ehrenfest’s Theorem . 36

7 Ground State and Excited State Calculations of One-Dimensional Quantum
Systems 40
7.1 Review of Linear Algebra . 40

7.1.1 Proof that the Eigenvalues of a Hermitian Matrix are Real 40
7.1.2 Proof that eigenvectors corresponding to distinct eigenvalues of a Hermitian

matrix are orthogonal . 41

∗Tohoku University

1

7.1.3 On the orthogonality of eigenvectors corresponding to equal eigenvalues of
a Hermitian matrix (the case of degenerate eigenvalues) 41

7.1.4 A brief summary of properties of eigenvalues and eigenvectors of Hermitian
matrices . 42

7.2 Numerical computation of the diagonalization of a real symmetric matrix 42
7.3 Solving the Time-Independent Schrödinger Equation Using the Real-Space Finite

Difference Method . 43
7.3.1 Infinite Square Well Potential Problem . 43
7.3.2 Ground and Excited States of the 1D Harmonic Oscillator 46

8 Quantum Dynamics under a Time-Dependent Hamiltonian 52
8.1 Time Evolution under a Time-Dependent Hamiltonian 52
8.2 Dynamics of a Quantum Wavepacket in an Oscillating Harmonic Potential 53
8.3 Electron dynamics of a one-dimensional hydrogen atom under a laser electric field 57
8.4 Absorbing Potential . 60
8.5 Analysis of High-Order Harmonic Generation . 63

2

Preface

This note is provided to support learning numerical methods for investigating the steady states
and dynamics of quantum systems. Numerical computation is a powerful analytical tool that uses
computers to explore problems that are difficult to solve with paper and pencil alone.

In the first half of the note, we cover the basics of programming with Python and computational
physics. We then use one-dimensional quantum systems as a subject to learn numerical methods
for analyzing quantum systems, including the time evolution of wave packets and the computation
of ground states.

The contents of this note are updated from time to time. For the latest material, please check
the most recent version of the note at the URL below.

https://shunsuke-sato.github.io/page/etc/lecture_notes/LectureNoteForComputationalPhysics_

en.pdf

3

https://shunsuke-sato.github.io/page/etc/lecture_notes/LectureNoteForComputationalPhysics_en.pdf
https://shunsuke-sato.github.io/page/etc/lecture_notes/LectureNoteForComputationalPhysics_en.pdf
https://shunsuke-sato.github.io/page/etc/lecture_notes/LectureNoteForComputationalPhysics_en.pdf
https://shunsuke-sato.github.io/page/etc/lecture_notes/LectureNoteForComputationalPhysics_en.pdf

1 Getting Familiar with Python

In this section, we will familiarize ourselves with programming in Python and prepare to perform
numerical computations.

1.1 Running Python

First, let’s learn the basic steps of programming with Python. A Python program can be executed
by following these steps:

1. Write code in the Python language and save it as a file with the .py extension.

2. Execute the file prepared in the previous step using the python command.

To learn this procedure, write the following Python code and save it with the filename hello.py.

Source code 1: Hello world program

1 print(’Hello␣world!!’)

Here, the print statement is a function used to output results. In the above program, the
print statement is used to output the string Hello world!!. Also, in Python, you can enclose
characters in single quotes (’) or double quotes (") to treat the enclosed characters as a string
variable.

Once the above code is ready, try running the Python program by entering and executing the
following command in the terminal:

$ python hello.py

Hello world!!

Then, you should be able to confirm that the string Hello world!! is output.
Up to this point, you have understood the basic process of creating and running a Python

program. In the next section, we will learn about variables and data types in Python.

1.2 Variable Types in Python

Not only in Python but in programming in general, variables and variable types are extremely
important concepts. A variable is a storage location for various data used in a program. The kind
of data that a variable holds is called its type.

• Variable: A “named box” that stores data

• Type: The “kind of data” inside the box (integer, floating-point number, string, etc.)

To understand variables and types in Python, let’s write and run the following program.

Source code 2: Code to check variable types

1 a = 2
2 b = 3.0
3 c = ’Tohoku ’
4

5 print(’a=’,a)
6 print(’b=’,b)
7 print(’c=’,c)
8

9 print(’type(a)=’,type(a))
10 print(’type(b)=’,type(b))
11 print(’type(c)=’,type(c))

4

Execution Result (example)

1 a= 2
2 b= 3.0
3 c= Tohoku
4 type(a)= <class ’int’>
5 type(b)= <class ’float’>
6 type(c)= <class ’str’>

In Python, the equals sign (=) represents the assignment operation to a variable. Using this
assignment operation, in lines 1–3 of Source Code 2, the values 2, 3.0, ’Tohoku’ are assigned
to the variables a, b, c, respectively.

In lines 5–7 of Source Code 2, the assigned data are output using the print statement. By
looking at this output, we can confirm that the correct data have been assigned to the variables.

In lines 9–11 of Source Code 2, the types of the above variables a, b, c are checked using the
type function, and the results are output with the print statement. By using type(a) in this
way, you can check the type of variable a.

When executing Source Code 2, you can confirm that the types of variables a, b, c are
integer type (int), floating-point type (float), and string type (str), respectively. In the
above program, the type of each variable is determined at the time the data are assigned, depending
on the data type. In this way, Python automatically infers the data type when assignments or
similar operations are made. In contrast, in other languages (for example, C or Fortran), it is
sometimes necessary to explicitly specify the type of a variable before using it. At first glance,
automatic type inference may seem like a very convenient feature, but explicitly specifying types
can help reduce errors (bugs) in the source code, so type specification also has its advantages.
Moreover, when writing source code in Python, it is also possible to explicitly specify types.

1.3 Basic Mathematical Operations in Python

Many physics simulations are executed by combining fundamental mathematical operations such
as the four arithmetic operations and exponentiation. Here, we will learn about the basics of
mathematical operations in Python by using Python code that performs such calculations. First,
let us look at the Python source code 3.

Source code 3: Code for Arithmetic Operations

1 a = 3.0
2 b = 5.0
3

4 c = a + b
5 d = a - b
6 e = a * b
7 f = a / b
8 g = a ** b
9

10 print(’a=’,a)
11 print(’b=’,b)
12

13 print(’a+b=’,c)
14 print(’a-b=’,d)
15 print(’a*b=’,e)
16 print(’a/b=’,f)
17 print(’a**b=’,g)

In this program, in the first and second lines, the real numbers 3.0 and 5.0 are assigned to
the variables a and b, respectively.

From lines 4 to 8 of the code, the four arithmetic operations and exponentiation are performed
using the prepared variables a,b, and the results are assigned to new variables c,d,e,f,g. In
Python, addition is represented by the symbol +, subtraction by -, multiplication by *, division
by /, and exponentiation by **.

Finally, in lines 14 to 18 of the code, the results of the above arithmetic operations and
exponentiation are output using the print statement.

5

Save the above code into a file with the .py extension and execute it on the terminal using the
python command. Then, the instructions written in the code will be executed in order from top
to bottom. Check whether the results obtained match the expected results.

6

2 Numerical Differentiation

In this section, we learn about numerical differentiation, which evaluates derivatives of func-
tions using numerical computation.

2.1 Finite Difference Approximation and Forward Difference

Before performing differentiation numerically, let us recall the mathematical definition of a deriva-
tive. The derivative of a function f(x) is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (1)

Based on this definition, we consider approximating the derivative f ′(x) of a function f(x) by
using a sufficiently small h as follows:

f ′(x) ≈ f(x+ h)− f(x)

h
. (2)

An approach that approximates derivatives using a finite step width h like this is called a finite
difference approximation. In particular, an approximation formula such as Eq. (2) is called the
forward difference formula. Its meaning will become clear by comparing it with the central
difference formula described in the next subsection.

To check the effectiveness of the finite difference approximation, let us use Eq. (2) to compute
the derivative of the function f(x) = ex at x = 0 and compare it with the exact value f ′(0) =
e0 = 1. A sample source code is shown below.

Source code 4: Evaluation of a derivative using the forward difference formula

1 import numpy as np
2

3

4 x = 0.0
5 h = 0.1
6

7 fx = np.exp(x)
8 fxph = np.exp(x+h)
9

10 num_dfdx = (fxph -fx)/h
11 ana_dfdx = np.exp(x)
12

13 error = np.abs(num_dfdx - ana_dfdx)
14

15 # Print results
16 print(f’For␣h␣=␣{h}:’)
17 print(f’Numerical␣derivative␣of␣exp({x})␣=␣{num_dfdx}’)
18 print(f’Analytical␣derivative␣of␣exp({x})␣=␣{np.exp(x)}’)
19 print(f’Error␣=␣{error}’)

In the first line of the source code, import numpy as np imports an extension module called
numpy for numerical computation. By appending as np during the import, we can call numpy
using the abbreviation np. In this example, the module is imported in order to call the exponential
function within the numpy module.

In the above program, to obtain the derivative at x = 0 with a step size h = 0.1, lines 4 and 5
set the values using x = 0.0 and h = 0.1.

In lines 7 and 8, the values of the function at x and x + h are computed using numpy’s
exponential function np.exp() and assigned to the variables fx and fxph. Furthermore, in line
10, the derivative is evaluated using the forward difference formula, Eq. (2). In line 13, the
approximate derivative obtained from the above calculations and the difference from the exact
derivative are output.

By running the above program, let us verify whether the derivative can be well approximated
by the finite difference approximation. Also, by changing the step size h, investigate how the
accuracy of the approximation changes.

7

2.2 Central Difference Formula and Accuracy of Finite Difference Ap-
proximation

The finite difference approximation formula, Eq. (2), from the previous section shows that as the
step size h becomes smaller, the error also decreases. The magnitude of the error can be estimated
using a Taylor expansion as follows:

f(x+ h) = f(x) + f ′(x)h+O(h2). (3)

Therefore,

f ′(x) =
f(x+ h)− f(x)

h
+O(h). (4)

Thus, the error of the forward difference formula is O(h), and in the limit of small h, the error
decreases proportionally to h.

Now, let us consider the following two Taylor expansions:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +O(h3), (5)

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 +O(h3). (6)

By taking the difference of these two equations, we obtain the following finite difference formula:

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2). (7)

This finite difference formula is called the central difference formula, which takes differences
symmetrically in both the positive and negative directions. The error term is O(h2), which means
the error is of order h2.

Here, let us examine how the accuracy of the forward difference formula, Eq. (2), and the
central difference formula, Eq. (7), behave with respect to the step size h by actually writing and
running a program. Similar to the example above, the following program computes the derivative
of the function f(x) = ex at x = 0.

Source code 5: Evaluation of derivative values using forward difference and central difference
formulas

1 from matplotlib import pyplot as plt
2 import numpy as np
3

4 # Parameters
5 x = 0.0 # Point at which derivative is evaluated
6 step_sizes = np.array ([1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1.0]) # Differentiation step sizes
7

8 # Numerical derivatives
9 forward_diff = (np.exp(x + step_sizes) - np.exp(x)) / step_sizes

10 central_diff = (np.exp(x + step_sizes) - np.exp(x - step_sizes)) / (2.0 * step_sizes)
11

12 # Error evaluation
13 error_forward = np.abs(forward_diff - np.exp(x))
14 error_central = np.abs(central_diff - np.exp(x))
15

16 # Plotting the data
17 plt.plot(step_sizes , error_forward , label="Forward␣Difference", marker=’o’)
18 plt.plot(step_sizes , error_central , label="Central␣Difference", marker=’x’)
19 plt.xscale(’log’)
20 plt.yscale(’log’)
21 plt.xlabel(’Step␣Size␣(h)’)
22 plt.ylabel(’Error ’)
23 plt.title(’Error␣in␣Numerical␣Differentiation ’)
24 plt.legend ()
25 plt.grid(True)
26

27 # Saving the plot
28 plt.savefig("error_derivative.png")
29 plt.show()

8

Let us now take a look at the above Python program. Line 4 is a comment line beginning with
#; it does not perform any computation but serves as a reference for humans reading the program.
In line 5, the point at which the derivative is computed is specified by x = 0.0. Then, various
step sizes used in evaluating the derivative via difference methods are defined as a NumPy array.

In line 9, the derivative is numerically evaluated using the forward difference formula for each
value in the step size array step sizes. In line 10, the derivative is numerically evaluated using
the central difference formula.

Next, in lines 13 and 14, the differences between the numerically evaluated derivatives (using
forward and central difference formulas) and the exact derivative value are computed, thereby
evaluating the error of each difference formula.

Furthermore, from line 16 onward, the program uses matplotlib to plot the errors of the
difference formulas obtained from the above calculations. Figure 1 shows the figure generated by
this code. Noting that both the horizontal and vertical axes are logarithmic, we can see that the
error of the forward difference approximation (Forward difference; blue line) and the error of the
central difference approximation (Central difference; orange line) scale proportionally to different
powers of h. This behavior is consistent with the earlier discussion of error magnitudes.

10 6 10 5 10 4 10 3 10 2 10 1 100

Step Size (h)

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r

Error in Numerical Differentiation
Forward Difference
Central Difference

Figure 1: Behavior of the errors in the forward difference and central difference approximations.

2.3 Numerical Differentiation of the Second Derivative

In the previous section, we performed numerical computation of the first derivative using finite
difference approximation. Here, we will extend the knowledge gained from the first derivative to
learn how to numerically evaluate the second derivative. By applying the Taylor expansion in
Eq. (6), we can obtain the following relation:

f(x+ h)− 2f(x) + f(x− h)

h2
=
d2f(x)

dx
+O(h2). (8)

Using this equation, the second derivative can be evaluated numerically. Moreover, the error is of
order (h2).

The following Python code numerically computes the second derivative f ′′(x) of the function
f(x) = cos(x) and outputs the result to the file cos derivative.dat. Try writing a similar code
yourself to become familiar with second derivatives and Python programming.

Source code 6: Evaluation of the second derivative using finite difference approximation

9

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 # Constants
5 dx = 0.1
6 nx = 128
7 x_start = -6.3
8 x_end = 6.3
9

10 # Generate x values
11 x = np.linspace(x_start , x_end , nx)
12

13 # Compute function values
14 fx = np.cos(x)
15 fx_pdx = np.cos(x + dx)
16 fx_mdx = np.cos(x - dx)
17

18 # Second derivative using central difference
19 d2fdx2 = (fx_pdx - 2 * fx + fx_mdx) / dx**2
20

21 # Plotting the function and its second derivative
22 plt.plot(x, fx , label="f(x)␣=␣cos(x)")
23 plt.plot(x, d2fdx2 , label="f’’(x)")
24

25 plt.xlabel(’x’)
26 plt.ylabel(’f(x)’)
27 plt.title(’Function␣and␣Second␣Derivative ’)
28 plt.legend ()
29 plt.savefig("second_derivative_cos.png")
30 plt.show()

Figure 2 shows a comparison of f(x) = cos(x) and f ′′(x) = − cos(x) obtained from executing
the above program.

6 4 2 0 2 4 6
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(x
)

Function and Second Derivative

f(x) = cos(x)
f''(x)

Figure 2: Second order derivative of cos function.

10

3 Numerical Integration

3.1 Trapezoidal Rule

In this section, we study numerical integration, which evaluates the integral of a function using
numerical computation. Let us first consider the following one-dimensional integral:

S =

∫ b

a

dxf(x). (9)

Here, we divide the integration interval (a ≤ x ≤ b) into N subdivisions. The width of each
subdivision ∆x is given by ∆x = (b − a)/N . We can then rewrite the integral S as the sum of
integrals over the subdivided intervals as follows:

S =

∫ b

a

dxf(x) =

∫ a+∆x

a

dxf(x) +

∫ a+2∆x

a+∆x

dxf(x) +

∫ a+3∆x

a+2∆x

dxf(x) + · · ·+
∫ b

a+(N−1)∆x

dxf(x)

=

N−1∑
j=0

∫ a+(j+1)∆x

a+j∆x

dxf(x). (10)

If the subdivision width ∆x is sufficiently small, the integrand f(x) can be approximated by
a linear function passing through the two endpoints of each small integration interval. That is,
within the small interval (a+ j∆x ≤ x ≤ a+ (j + 1)∆x), f(x) can be approximated as

f(x) ≈ f(a+ j∆x) +
f(a+ (j + 1)∆x)− f(a+ j∆x)

∆x
(x− a− j∆x) . (11)

The integral over the small interval can then be approximated as∫ a+(j+1)∆x

a+j∆x

dxf(x) ≈ f(a+ (j + 1)∆x)− f(a+ j∆x)

2
∆x. (12)

Thus, Eq. (10) can be approximated as follows:

S =

N−1∑
j=0

∫ a+(j+1)∆x

a+j∆x

dx f(x)

≈
N−1∑
j=0

∫ a+(j+1)∆x

a+j∆x

dx
f (a+ (j + 1)∆x) + f (a+ j∆x)

2

=

N−1∑
j=0

f (a+ (j + 1)∆x) + f (a+ j∆x)

2

∫ a+(j+1)∆x

a+j∆x

dx

=

N−1∑
j=0

f (a+ (j + 1)∆x) + f (a+ j∆x)

2
∆x

=
f(a)

2
∆x+

N−1∑
j=1

f(a+ j∆x)∆x

+
f(b)

2
∆x. (13)

The approximation formula in Eq. (13) is called the trapezoidal rule, which is an approximate
formula for the integral S. In the limit of a large number of subdivisions (N → ∞, ∆x→ 0), the
trapezoidal rule, Eq. (13) coincides with the exact value of the integral S.

Let us evaluate the following integral numerically using the trapezoidal rule:

S =

∫ 2

1

dx
1

x
= log(2)− log(1) = log(2) ≈ 0.6931471805599453 (14)

11

Source Code 7 is a Python code that numerically evaluates the above integral. To become
familiar with numerical integration and Python programming, refer to this sample code and try
writing your own code to evaluate the integral.

Source code 7: Example of numerical integration using the trapezoidal rule

1 import numpy as np
2

3 a = 1.0
4 b = 2.0
5 n = 64
6

7 h = (b-a)/n
8

9 s = (1.0/a+1.0/b)/2.0
10 for i in range(1,n):
11 x = a + i*h
12 s += 1/x
13

14 s = s*h
15

16 print(’num.␣integral␣=␣’,s)
17 print(’log(2)␣␣␣␣␣␣␣␣=␣’,np.log(2))

12

4 Solution of First-Order Ordinary Differential Equations

Differential equations are extremely important for understanding various phenomena, but except
in limited cases, it is difficult to obtain analytic solutions. Even in such cases, it is sometimes
possible to solve differential equations numerically. In this section, we learn how to solve first-order
ordinary differential equations numerically. Let us first consider the following first-order ordinary
differential equation in one variable:

dy(x)

dx
= f (x, y(x)) . (15)

4.1 Euler Method

We begin by learning the most basic method, the Euler method. As in Section 2.1, where we
discussed the forward difference formula, Eq. (2), let us recall the definition of the derivative. The
derivative of a function y(x) is defined as follows:

y′(x) = lim
h→0

y(x+ h)− y(x)

h
. (16)

If we assume h is sufficiently small, we can approximate the derivative using the forward difference
formula as

y′(x) ≈ y(x+ h)− y(x)

h
. (17)

Rewriting this equation, we obtain

y(x+ h) ≈ y(x) + y′(x)h. (18)

Looking at equation (18), we see that the right-hand side depends only on the information of
y(x) and y′(x) at x. Using this information, we can approximately evaluate the function value
y(x+h) at x+h. Therefore, by repeating this procedure recursively, we can evaluate the function
value y(x) at any value of x. This numerical method of solving differential equations is called the
Euler method.

Below, we describe the procedure of the Euler method in more detail:

1. First, in the differential equation, Eq. (15), set the initial condition y(x0) = y0.

2. Next, evaluate f(x0, y(x0)) and obtain the derivative value y′(x0).

3. Using the evaluated derivative y′(x0), apply Eq. (18) to obtain the function value y(x0 + h)
at x0 + h.

4. Based on the evaluated y(x0+h), calculate the function value f(x0+h, y(x0+h)) and obtain
the derivative y′(x0 + h) at x0 + h.

5. Using the evaluated derivative y′(x0+h), apply Eq. (18) to obtain the function value y(x0+
2h) at x0 + 2h.

6. Repeat the same steps thereafter.

By repeatedly performing this procedure, we can solve the differential equation numerically.
As a practice problem in solving differential equations numerically with the Euler method, let us
try solving the following differential equation numerically under the initial condition y(0) = 1:

y′(x) = −y(x). (19)

The solution of this differential equation is the exponential function y(x) = e−x.
Let us write your own code to solve the differential equation and check how the accuracy of the

obtained solution changes when the step size h is varied. An example in Python is shown below:

13

Source code 8: Solving a differential equation with the Euler method

1 from matplotlib import pyplot as plt
2 import numpy as np
3

4 # compute dy/dx
5 def dydx(x,y):
6 return -y
7

8 # compute y(x+h)
9 def euler_method(y,x,h):

10 return y+dydx(x,y)*h
11

12

13 xi = 0.0
14 xf = 5.0
15 n = 10
16

17 h = (xf-xi)/n
18

19 # initial condition
20 x = xi
21 y = 1.0
22

23

24 x_j = np.zeros ((n+1))
25 y_euler = np.zeros((n+1))
26 x_j [0] = x
27 y_euler [0] = y
28

29 for i in range(n):
30 x = xi + i*h
31 y = euler_method(y_euler[i],x,h)
32 x_j[i+1] = x+h
33 y_euler[i+1] = y
34

35

36 # plot
37 plt.plot(x_j , y_euler , label="Euler␣method")
38 plt.plot(x_j , np.exp(-x_j), label="Exact", linestyle=’dashed ’)
39

40 plt.xlabel(’x’)
41 plt.ylabel(’y’)
42 plt.legend ()
43 plt.savefig("result_Euler.png")
44 plt.show()

In Source Code 8, a user-defined function is created using def. By defining a new function
with the def statement, it becomes easier to write programs that repeat the same procedure. A
function definition can be written as follows:
def function name(argument1, argument2, argument3, · · ·):
The steps to be carried out by the function are written in an indented block, and finally the
function is terminated with a return statement, returning control to the main program. At this
point, after the return statement, the output of the function, known as the function’s return
value, can be specified.

The result obtained by executing Source Code 8 is shown in Fig. 3

4.2 Solution by Heun Method

In the previous section, we discussed Euler’s method as the simplest technique. However, Euler’s
method has difficulty achieving high accuracy in calculations and is not often used in practical
applications. Here, we describe Heun method as a relatively simple method that offers higher
accuracy than Euler’s method.

In the previous section, Euler’s method was derived based on the forward difference approxi-
mation. Here, we consider deriving a numerical solution method based on the central difference
formula, Eq. (7), which is more accurate than the forward difference formula. By using the central

14

0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Euler method
Exact

Figure 3: An example of solving a differential equation using the Euler method.

difference formula, we can obtain the following approximation:

dy
(
x+ h

2

)
dx

≈ y(x+ h)− y(x)

h
. (20)

Furthermore, in the same way as with Euler’s method, we can rewrite this as follows:

y(x+ h) ≈ y(x) +
dy

(
x+ h

2

)
dx

h. (21)

Here, by replacing the derivative value
dy(x+h

2)
dx with the average of the derivative values at x+h

and x, and further applying the original differential equation, Eq. (15), we obtain the following
relation:

y(x+ h) ≈ y(x) + h
f (x+ h, y(x+ h)) + f (x, y(x))

2
. (22)

This relation provides a more accurate approximation than Euler’s method, but it is difficult to use
directly in actual calculations. This is because, in order to evaluate the left-hand side y(x + h),
information about y(x + h) at x + h is already required when computing the right-hand side.
Therefore, to approximate this relation, we adopt the following two-step procedure.

First, in the initial step, we obtain an approximate value of y(x) at x+h using Euler’s method:

ȳ(x+ h) = y(x) + hf (x, y(x)) . (23)

In the second step, using the approximate value ȳ(x+h) obtained in the first step, we evaluate
the right-hand side of Eq. (22) and compute y(x+ h) as follows:

y(x+ h) = y(x) + h
f (x+ h, ȳ(x+ h)) + f (x, y(x))

2
. (24)

This two-step procedure using Eq. (23) and Eq. (24) is called Heun’s method for solving
differential equations. To compare the accuracy of Heun’s method with that of Euler’s method,
let us solve the differential equation, Eq. (19).

Below, we show a Python code example that extends the Euler method sample code, Source
Code 8, to include computations by Heun’s method.

15

Source code 9: Solution of a differential equation by Heun’s method and Euler’s method

1 from matplotlib import pyplot as plt
2 import numpy as np
3

4 # compute dy/dx
5 def dydx(x,y):
6 return -y
7

8 # compute y(x+h)
9 def euler_method(y,x,h):

10 return y+dydx(x,y)*h
11

12 # compute y(x+h)
13 def heun_method(y,x,h):
14 y_bar = y+dydx(x,y)*h
15 return y+0.5*h*(dydx(x,y)+dydx(x+h,y_bar))
16

17 xi = 0.0
18 xf = 5.0
19 n = 10
20

21 h = (xf-xi)/n
22

23 # initial condition
24 x = xi
25 y = 1.0
26

27

28 x_j = np.zeros ((n+1))
29 y_euler = np.zeros((n+1))
30 y_heun = np.zeros((n+1))
31

32 x_j [0] = x
33 y_euler [0] = y
34 y_heun [0] = y
35

36 for i in range(n):
37 x = xi + i*h
38 y_euler[i+1] = euler_method(y_euler[i],x,h)
39 y_heun[i+1] = heun_method(y_heun[i],x,h)
40 x_j[i+1] = x+h
41

42

43

44 # plot
45 plt.plot(x_j , y_euler , label="Euler␣method")
46 plt.plot(x_j , y_heun , label="Heun␣method", linestyle=’dashed ’)
47 plt.plot(x_j , np.exp(-x_j), label="Exact", linestyle=’dotted ’)
48

49 plt.xlabel(’x’)
50 plt.ylabel(’y’)
51 plt.legend ()
52 plt.savefig("result_Heun.png")
53 plt.show()

Figure 4 shows the result obtained by executing Source Code 9.

4.3 Solution by the Runge-–Kutta Method

Compared with the Euler and Heun methods, the Runge—Kutta method provides a more accurate
numerical solution method. In particular, the fourth-order Runge-–Kutta method is widely used
for solving differential equations. The fourth-order Runge—Kutta method solves the differential
equation

dy(x)

dx
= f (x, y(x)) (25)

16

0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Euler method
Heun method
Exact

Figure 4: Example of solving a differential equation using Heun’s method.

through the following multi-step procedure:

k1 = f (x, y(x)) (26)

k2 = f

(
x+

h

2
, y(x) +

h

2
k1

)
(27)

k3 = f

(
x+

h

2
, y(x) +

h

2
k2

)
(28)

k4 = f (x+ h, y(x) + hk3) (29)

y(x+ h) ≈ y(x) + h
k1 + 2k2 + 2k3 + k4

6
. (30)

Let us implement a program to solve the differential equation (19) using the Runge—Kutta
method, and examine how the accuracy changes by comparing the results with those of the Euler
and Heun methods.

17

Now editing here!!

5 Solving Second-Order Ordinary Differential Equations

In this section, we learn how to numerically solve second-order ordinary differential equations in
a single variable that can be written in the following form.

d2y(x)

dx2
= f

(
x, y(x),

dy(x)

dx

)
. (31)

Second-order ordinary differential equations of this kind include, for example, Newton’s equation

of motion (md2x(t)
dt2 = F (t)).

There are several ways to solve second-order ordinary differential equations. Here, by introduc-

ing the auxiliary variable s(x) = dy(x)
dx , we rewrite Eq. (31) as the following set of two first-order

ordinary differential equations:

ds(x)

dx
= f (x, y(x), s(x)) , (32)

dy(x)

dx
= s(x). (33)

Such a two-variable system of first-order ordinary differential equations can be solved numerically
using the methods for first-order ordinary differential equations described in Sec. 4.

As an example, let us learn about numerical methods for ordinary differential equations while
writing a program that solves the following second-order ordinary differential equation:

d2x(t)

dt
= −x(t). (34)

Here, we set the initial conditions to x(0) = 0, ẋ(0) = 1.

By introducing the auxiliary variable v(t) = dx(t)
dt , we can rewrite Eq. (34) as the following set

of differential equations:

dx(t)

dt
= v(t), (35)

dv(t)

dt
= −x(t). (36)

Furthermore, the initial conditions x(0) = 0, ẋ(0) = 1 can be rewritten as x(0) = 0, v(0) = 1. Note
that the solution to this differential equation is x(t) = sin(t), v(t) = cos(t).

Source Code is Python code that solves the system of first-order differential equations, Eqs. (35)
and (36), using the Euler method. Using this source code as a reference, try writing your own
code to solve the system (35-36).

Source code 10: Sample code for solving a system of first-order differential equations with the
Euler method

1 from matplotlib import pyplot as plt
2 import numpy as np
3

4 def dxdt(v):
5 return v
6

7 def dvdt(x):
8 return -x
9

10 def euler_method(x,v,dt):
11 x_updated = x + dt*dxdt(v)
12 v_updated = v + dt*dvdt(x)
13 return x_updated , v_updated

18

14

15 ti = 0.0
16 tf = 15.0
17 n = 45
18 dt = (tf - ti)/n
19

20 # Initial conditions
21 x = 1.0
22 v = 0.0
23

24

25 tt = np.zeros(n+1)
26 xt = np.zeros(n+1)
27 vt = np.zeros(n+1)
28

29 tt[0] = ti
30 xt[0] = x
31 vt[0] = v
32

33 for j in range(n):
34 x, v = euler_method(x,v,dt)
35 xt[j+1] = x
36 vt[j+1] = v
37 tt[j+1] = ti + (j+1)*dt
38

39

40 # Plot the results
41 plt.plot(tt , xt, label=’x(t)’)
42 plt.plot(tt , vt, label=’v(t)’)
43 plt.plot(tt , np.cos(tt), label=’x(t):␣Exact’, linestyle=’dashed ’)
44 plt.plot(tt , -np.sin(tt), label=’v(t):␣Exact’, linestyle=’dashed ’)
45

46 plt.xlabel(’t’)
47 plt.ylabel(’x,v’)
48 plt.legend ()
49 plt.savefig("result_Euler_2nd.png")
50 plt.show()

Figure 5 compares the numerical solution obtained by running Source Code 10 with the exact
solution. You can observe how the numerical solution obtained by the Euler method deviates
significantly from the exact solution as time t progresses.

0 2 4 6 8 10 12 14
t

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

x,
v

x(t)
v(t)
x(t): Exact
v(t): Exact

Figure 5: Comparison between the result of solving the system of differential equations, Eq. (35)
and Eq. (36), with the Euler method and the exact solution.

As learned in Sec. 4.1, the accuracy of the numerical solution can be improved by using Heun’s
method or the Runge–Kutta method. Source Code 11 shows an example of code that solves the
system, Eqs. (35-36), using Heun’s method. Figure 6 shows a comparison between the resulting
numerical solution and the exact solution. By using Heun’s method, we can achieve higher accuracy

19

than with the Euler method.

Source code 11: Sample code for solving a system of first-order differential equations with Heun’s
method

1 from matplotlib import pyplot as plt
2 import numpy as np
3

4 def dxdt(v):
5 return v
6

7 def dvdt(x):
8 return -x
9

10 #def euler_method (x,v,dt):
11 # x_updated = x + dt*dxdt(v)
12 # v_updated = v + dt*dvdt(x)
13 # return x_updated , v_updated
14

15 def heun_method(x,v,dt):
16 # first step
17 x_bar = x + dt*dxdt(v)
18 v_bar = v + dt*dvdt(x)
19

20 # second step
21 x_updated = x + 0.5*dt*(dxdt(v)+dxdt(v_bar))
22 v_updated = v + 0.5*dt*(dvdt(x)+dvdt(x_bar))
23 return x_updated , v_updated
24

25 ti = 0.0
26 tf = 15.0
27 n = 45
28 dt = (tf - ti)/n
29

30 # Initial conditions
31 x = 1.0
32 v = 0.0
33

34

35 tt = np.zeros(n+1)
36 xt = np.zeros(n+1)
37 vt = np.zeros(n+1)
38

39 tt[0] = ti
40 xt[0] = x
41 vt[0] = v
42

43 for j in range(n):
44 x, v = heun_method(x,v,dt)
45 xt[j+1] = x
46 vt[j+1] = v
47 tt[j+1] = ti + (j+1)*dt
48

49

50 # Plot the results
51 plt.plot(tt , xt, label=’x(t)’)
52 plt.plot(tt , vt, label=’v(t)’)
53 plt.plot(tt , np.cos(tt), label=’x(t):␣Exact’, linestyle=’dashed ’)
54 plt.plot(tt , -np.sin(tt), label=’v(t):␣Exact’, linestyle=’dashed ’)
55

56 plt.xlabel(’t’)
57 plt.ylabel(’x,v’)
58 plt.legend ()
59 plt.savefig("result_Heun_2nd.png")
60 plt.show()

You can implement a program that solves the system of differential equations, Eqs. (35-36),
using Heun’s method or the Runge–Kutta method and verify the computational accuracy.

20

0 2 4 6 8 10 12 14
t

1.0

0.5

0.0

0.5

1.0

x,
v

x(t)
v(t)
x(t): Exact
v(t): Exact

Figure 6: Comparison between the result of solving the system of differential equations (35-36)
with Heun’s method and the exact solution.

21

6 Quantum Dynamics Simulation in One Dimension

In this section, we treat the numerical solution of the time-dependent Schrödinger equation to
simulate the propagation of a one-dimensional wave packet. The motion of a particle under a
time-independent potential V (x) is described by the following Schrödinger equation:

ih̄
∂

∂t
ψ(x, t) =

[
− h̄2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t) = Ĥψ(x, t). (37)

Here, the Hamiltonian H is defined as

Ĥ = − h̄2

2m

∂2

∂x2
+ V (x) (38)

For the moment, let us impose the boundary conditions ψ(x = −L/2, t) = ψ(x = L/2, t) = 0,
where L is a sufficiently large value.

We now consider solving this Schrödinger equation under the initial condition at time t = 0:

ψ(x, t = 0) = e
− (x−x0)2

2σ2
0 eik0(x−x0) (39)

Here, x0 is the central position of the wave packet, k0 is the central wavenumber, and σ0 is the
width of the wave packet.

6.1 Real-Space Method

To represent the wave function on a computer, let us consider the discretization of spatial coordi-
nates as follows:

x→ xj = −L
2
+ ∆x× (j + 1) (−1 ≤ j ≤ N). (40)

Here, ∆x = L/(N+1). The values of the wave function ψ(x, t) at the (N+1) points x−1, x0, x1, · · · , xN
prepared in this way are expressed as:

ψj(t) = ψ(xj , t). (41)

This method of handling functions at a finite number of points in real space is called the real-
space method. To become familiar with the description of wave functions using the real-space
method, let us plot the wave function given by the initial condition (Eq. (39)). At this time, freely
set the values of x0, k0, σ0 and observe how the real and imaginary parts of the wave function
change.

Source Code 12 is a sample source code for visualization. Try writing your own code and
attempt to visualize the wave function.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

write_init_wf.py

Source code 12: Visualization of the initial wave function

1 from matplotlib import pyplot as plt
2 import numpy as np
3

4 # Initialize the wavefunction
5 def initialize_wf(xj, x0, k0, sigma0):
6 wf = np.exp(1j*k0*(xj-x0))*np.exp (-0.5*(xj-x0)**2/ sigma0 **2)
7 return wf
8

9

10

11 # initial wavefunction parameters
12 x0 = -25.0

22

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_write_init_wf.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_write_init_wf.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_write_init_wf.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_write_init_wf.py

13 k0 = 0.85
14 sigma0 = 5.0
15

16 # set the coordinate
17 xmin = -100.0
18 xmax = 100.0
19 n = 2500
20

21 dx = (xmax -xmin)/(n+1)
22 xj = np.zeros(n)
23

24 for i in range(n):
25 xj[i] = xmin + dx*(i+1)
26

27

28 # Initialize the wavefunction
29 wf = initialize_wf(xj, x0 , k0 , sigma0)
30

31 # Plot the results
32 plt.plot(xj , np.real(wf), label="Real␣part")
33 plt.plot(xj , np.imag(wf), label="Imaginary␣part")
34

35 plt.xlabel(’x’)
36 plt.ylabel(’ψ(x)’)
37 plt.legend ()
38 plt.savefig("init_wf.png")
39 plt.show()

In Source Code 12, the parameters are set as x0 = −25, k0 = 0.85, and σ0 = 25.0 for visualizing
the wave function. Furthermore, using the real-space method, the range (−100 ≤ x ≤ 100) is
divided into N = 2500 grid points for visualization.

By executing Source Code 12, the wave function can be visualized as shown in Fig. 7. Try
changing the physical parameters x0, k0, σ0 and the number of divisions N , and observe how the
visualized wave function behaves.

100 75 50 25 0 25 50 75 100
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(x
)

Real part
Imaginary

Figure 7: Real and imaginary parts of the initial wave function.

6.2 Real-time method

Next, let us compute the time evolution of a wavefunction defined on the finite set of discrete
points xj prepared by the real-space method above. To do this, we first consider the formal
solution of the Schrödinger equation, Eq. (37). Noting that the Hamiltonian in the Schrödinger
equation, Eq. (37), is time independent, we can write down its formal solution in the following

23

form.

ψ(x, t) = exp

[
− i

h̄
Ĥt

]
ψ(x, 0). (42)

Here, the exponential of a general operator A is defined by the following Taylor expansion:

exp
[
Â
]
= I +

∞∑
n=1

Ân

n!
. (43)

Here I denotes the identity operator.

If we can evaluate the time-evolution operator Û(t, 0) = exp
[
− i

h̄Ĥt
]
numerically, then we can

compute the time evolution of the wavefunction by numerical calculation. There are several ways
to evaluate such operator exponentials; here we adopt a representation in which the time-evolution
operator is written as a product of time-evolution operators with a small time step. Namely, we
express the time-evolution operator Û(t, 0) as the following product of time-evolution operators:

Û(t, 0) = exp

[
−i t
h̄
Ĥ

]
= exp

[
−i∆t

h̄
Ĥ

]
× · · · exp

[
−i∆t

h̄
Ĥ

]
=

[
exp

[
−i∆t

h̄
Ĥ

]]Nt

. (44)

Here, the small time step ∆t is defined by ∆t = t/Nt.
Using Eq. (44), the time evolution of the wavefunction can be represented as a repetition of

evolution over the small time step ∆t. Next, let us consider how to evaluate the small time-step

propagator, exp
[
−i∆t

h̄ Ĥ
]
, numerically. Noting that the exponential of an operator is defined by

Eq. (43), the small time-step propagator can be written in the following Taylor expansion form:

exp

[
−i∆t

h̄
Ĥ

]
= I +

∞∑
n=1

(−i∆t/h̄)n

n!
Ĥn. (45)

The expansion of the time-evolution operator in Eq. (45) is exact. If the small time step ∆t
is sufficiently small, truncating the series in Eq. (45) after a finite number of terms is expected to
yield a sufficiently accurate approximation to the small time-step propagator. Therefore, taking
Nexp to be a finite integer, we approximate the operator as follows:

exp

[
−i∆t

h̄
Ĥ

]
≈ I +

Nexp∑
n=1

(−i∆t/h̄)n

n!
Ĥn. (46)

Using Eq. (46), we can write down the time-evolution equation for the wavefunction explicitly
and obtain the following approximation:

ψ(x, t+∆t) = exp

[
−i∆t

h̄
Ĥ

]
ψ(x, t)

≈ ψ(x, t) +

Nexp∑
n=1

(−i∆t/h̄)n

n!
Ĥnψ(x, t). (47)

In other words, by applying the Hamiltonian to the wavefunction ψ(x, t) multiple times, multi-
plying by appropriate constants, and adding the results to the original wavefunction ψ(x, t), we
can obtain an approximate wavefunction at the next time step, ψ(x, t+∆t). This approximation
becomes more accurate as ∆t is made smaller, and also as the truncation order Nexp is increased.
In practice, many applications take Nexp = 4 and use a sufficiently small ∆t to perform the time
propagation.

From here, we will write a code to compute the time evolution of a quantum wave packet using
the algorithm described above. Since the time evolution of the wavefunction can be realized by

24

repeatedly applying the Hamiltonian to the wavefunction many times, let us first write a code
that applies the Hamiltonian to a wavefunction. An example is shown in Source Code 13.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

ham_write.py

Source code 13: Example code for applying the Hamiltonian to a wavefunction

1 from matplotlib import pyplot as plt
2 import numpy as np
3

4 # Initialize the wavefunction
5 def initialize_wf(xj, x0, k0, sigma0):
6 wf = np.exp(1j*k0*(xj-x0))*np.exp (-0.5*(xj-x0)**2/ sigma0 **2)
7 return wf
8

9

10 # Operate the Hamiltonian to the wavefunction
11 def ham_wf(wf , vpot , dx):
12

13 n = wf.size
14 hwf = np.zeros(n, dtype=complex)
15

16 for i in range(1,n-1):
17 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
18

19 i = 0
20 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i])/(dx**2)
21 i = n-1
22 hwf[i] = -0.5*(-2.0*wf[i]+wf[i-1])/(dx**2)
23

24 hwf = hwf + vpot*wf
25

26 return hwf
27

28

29 # initial wavefunction parameters
30 x0 = -25.0
31 k0 = 0.85
32 sigma0 = 5.0
33

34 # set the coordinate
35 xmin = -100.0
36 xmax = 100.0
37 n = 2500
38

39 dx = (xmax -xmin)/(n+1)
40 xj = np.zeros(n)
41

42 for i in range(n):
43 xj[i] = xmin + dx*(i+1)
44

45

46 # Initialize the wavefunction
47 wf = initialize_wf(xj, x0 , k0 , sigma0)
48 vpot = np.zeros(n)
49

50 hwf = ham_wf(wf, vpot , dx)
51

52 # Plot the results
53 plt.plot(xj , np.real(wf), label="Real␣part␣(wf)")
54 plt.plot(xj , np.imag(wf), label="Imaginary␣part␣(wf)")
55 plt.plot(xj , np.real(hwf), label="Real␣part␣(ham␣wf)")
56 plt.plot(xj , np.imag(hwf), label="Imaginary␣part␣(ham␣wf)")
57

58 plt.xlabel(’x’)
59 plt.ylabel(’ψ(x)’)
60 plt.legend ()
61 plt.savefig("ham_wf.png")
62 plt.show()

Running the above Source Code 13 yields a figure like Figure 8. Here, the real and imaginary
parts of the initial wavefunction and of the wavefunction obtained by applying the Hamiltonian
to it are shown.

25

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_ham_write.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_ham_write.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_ham_write.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_ham_write.py

100 75 50 25 0 25 50 75 100
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(x
)

Real part (wf)
Imaginary (wf)
Real part (ham wf)
Real part (ham wf)

Figure 8: Visualization of the wavefunction with the Hamiltonian applied.

Next, we write code that computes the time evolution of the wavefunction by repeatedly using
the small time-step propagation in Eq. (47). Using the function created in the example above
(Source Code 12) that applies the Hamiltonian to a wavefunction, we carry out the small time-
step propagation of the wavefunction.

Source Code 14 shows an example of code that computes the time evolution of the wavefunction.
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics.py

Source code 14: Time evolution of a one-dimensional quantum wave packet

1 from matplotlib import pyplot as plt
2 import numpy as np
3

4 # Initialize the wavefunction
5 def initialize_wf(xj, x0, k0, sigma0):
6 wf = np.exp(1j*k0*(xj-x0))*np.exp (-0.5*(xj-x0)**2/ sigma0 **2)
7 return wf
8

9

10 # Operate the Hamiltonian to the wavefunction
11 def ham_wf(wf , vpot , dx):
12

13 n = wf.size
14 hwf = np.zeros(n, dtype=complex)
15

16 for i in range(1,n-1):
17 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
18

19 i = 0
20 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i])/(dx**2)
21 i = n-1
22 hwf[i] = -0.5*(-2.0*wf[i]+wf[i-1])/(dx**2)
23

24 hwf = hwf + vpot*wf
25

26 return hwf
27

28

29 # Time propagation from t to t+dt
30 def time_propagation(wf , vpot , dx , dt):
31

32 n = wf.size
33 twf = np.zeros(n, dtype=complex)
34 hwf = np.zeros(n, dtype=complex)
35

36 twf = wf

26

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics.py

37 zfact = 1.0 + 0j
38 for iexp in range (1,5):
39 zfact = zfact *(-1j*dt)/iexp
40 hwf = ham_wf(twf , vpot , dx)
41 wf = wf + zfact*hwf
42 twf = hwf
43

44 return wf
45

46

47 # initial wavefunction parameters
48 x0 = -25.0
49 k0 = 0.85
50 sigma0 = 5.0
51

52 # time propagation parameters
53 #Tprop = 80.0
54 Tprop = 8.0
55 dt = 0.005
56 nt = int(Tprop/dt)+1
57

58 # set the coordinate
59 xmin = -100.0
60 xmax = 100.0
61 n = 2500
62

63 dx = (xmax -xmin)/(n+1)
64 xj = np.zeros(n)
65

66 for i in range(n):
67 xj[i] = xmin + dx*(i+1)
68

69

70 # Initialize the wavefunction
71 wf = initialize_wf(xj, x0 , k0 , sigma0)
72 vpot = np.zeros(n)
73

74

75 # for loop for the time propagation
76 for it in range(nt+1):
77 wf = time_propagation(wf, vpot , dx, dt)
78 print(it, nt)
79

80 # Plot the results
81 plt.plot(xj , np.real(wf), label="Real␣part␣(wf)")
82 plt.plot(xj , np.imag(wf), label="Imaginary␣part␣(wf)")
83

84

85 plt.xlabel(’x’)
86 plt.ylabel(’ψ(x)’)
87 plt.legend ()
88 plt.savefig("fin_wf.pdf")
89 plt.show()

By running Source Code 14, starting from the initial wavefunction shown in Figure 7, the time-
evolved wavefunction displayed is like that in Figure 9. Based on the behavior of this wavefunction,
let us examine the time evolution of a quantum wave packet in free space.

27

100 75 50 25 0 25 50 75 100
x

0.6

0.4

0.2

0.0

0.2

0.4

(x
)

Real part (wf)
Imaginary (wf)

Figure 9: Time-evolved wavefunction.

6.2.1 Speeding up Python code with Numba

The execution of the above code may have taken some time. In general, Python is often slower
compared to other languages. However, by applying certain techniques, the execution speed of
Python code can be improved. Here, we will accelerate code execution using the JIT (Just in
Time) compilation feature of Numba.

Using Numba’s jit is very simple. At the beginning of the program, add from numba import

jit to enable the use of Numba’s jit. Next, write @jit(nopytohn=True) directly above the
function you want to speed up. This way, the specified function will be compiled by the jit
compiler, allowing the Python code to run faster.

As an example, let us accelerate the quantum wave packet simulation code 14 using Numba’s
jit. Source Code 15 is an example of code accelerated with Numba. In this code, the function
ham wf has been accelerated, and when initializing the complex array, the array type is strictly
defined as np.complex128, making it possible to accelerate with Numba.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_numba.py

Source code 15: Time evolution of a 1D quantum wave packet (accelerated with Numba)

1 from numba import jit
2 from matplotlib import pyplot as plt
3 import numpy as np
4

5 # Initialize the wavefunction
6 def initialize_wf(xj, x0, k0, sigma0):
7 wf = np.exp(1j*k0*(xj-x0))*np.exp (-0.5*(xj-x0)**2/ sigma0 **2)
8 return wf
9

10

11 # Operate the Hamiltonian to the wavefunction
12 @jit(nopython=True)
13 def ham_wf(wf , vpot , dx):
14

15 n = wf.size
16 hwf = np.zeros(n, dtype=np.complex128)
17

18 for i in range(1,n-1):
19 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
20

21 i = 0
22 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i])/(dx**2)
23 i = n-1

28

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_numba.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_numba.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_numba.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_numba.py

24 hwf[i] = -0.5*(-2.0*wf[i]+wf[i-1])/(dx**2)
25

26 hwf = hwf + vpot*wf
27

28 return hwf
29

30

31 # Time propagation from t to t+dt
32 def time_propagation(wf , vpot , dx , dt):
33

34 n = wf.size
35 twf = np.zeros(n, dtype=complex)
36 hwf = np.zeros(n, dtype=complex)
37

38 twf = wf
39 zfact = 1.0 + 0j
40 for iexp in range (1,5):
41 zfact = zfact *(-1j*dt)/iexp
42 hwf = ham_wf(twf , vpot , dx)
43 wf = wf + zfact*hwf
44 twf = hwf
45

46 return wf
47

48

49 # initial wavefunction parameters
50 x0 = -25.0
51 k0 = 0.85
52 sigma0 = 5.0
53

54 # time propagation parameters
55 #Tprop = 80.0
56 Tprop = 8.0
57 dt = 0.005
58 nt = int(Tprop/dt)+1
59

60 # set the coordinate
61 xmin = -100.0
62 xmax = 100.0
63 n = 2500
64

65 dx = (xmax -xmin)/(n+1)
66 xj = np.zeros(n)
67

68 for i in range(n):
69 xj[i] = xmin + dx*(i+1)
70

71

72 # Initialize the wavefunction
73 wf = initialize_wf(xj, x0 , k0 , sigma0)
74 vpot = np.zeros(n)
75

76

77 # for loop for the time propagation
78 for it in range(nt+1):
79 wf = time_propagation(wf, vpot , dx, dt)
80 print(it, nt)
81

82 # Plot the results
83 plt.plot(xj , np.real(wf), label="Real␣part␣(wf)")
84 plt.plot(xj , np.imag(wf), label="Imaginary␣part␣(wf)")
85

86

87 plt.xlabel(’x’)
88 plt.ylabel(’ψ(x)’)
89 plt.legend ()
90 plt.savefig("fin_wf.pdf")
91 plt.show()

6.3 Creating a movie of one-dimensional quantum wave packet dynam-
ics

In Source Code 14, only the wave function at the final time of the time-evolution calculation was
output as a figure. Here, to visualize how the quantum wave packet evolves from the initial time
to the final time, we will learn how to create a movie from the simulation results.

29

To make a movie from the simulation results, a common method is to prepare many image files,
like a flipbook, and then combine these image files into a movie. In Source Code 16, the previous
source code 14 is extended so that during the time-evolution calculation, the wave function at
each time step is saved. Finally, these wave function plots are generated, combined, and output
as a movie.

]https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_
dynamics_matplotlib.py

Source code 16: Code for creating a movie of quantum wave packet dynamics

1 from numba import jit
2 from matplotlib import pyplot as plt
3 import numpy as np
4 import matplotlib.animation as animation
5 from matplotlib.animation import PillowWriter
6

7 # Initialize the wavefunction
8 def initialize_wf(xj, x0, k0, sigma0):
9 wf = np.exp(1j*k0*(xj-x0))*np.exp (-0.5*(xj-x0)**2/ sigma0 **2)

10 return wf
11

12

13 # Operate the Hamiltonian to the wavefunction
14 @jit(nopython=True)
15 def ham_wf(wf , vpot , dx):
16

17 n = wf.size
18 hwf = np.zeros(n, dtype=np.complex128)
19

20 for i in range(1,n-1):
21 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
22

23 i = 0
24 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i])/(dx**2)
25 i = n-1
26 hwf[i] = -0.5*(-2.0*wf[i]+wf[i-1])/(dx**2)
27

28 hwf = hwf + vpot*wf
29

30 return hwf
31

32

33 # Time propagation from t to t+dt
34 def time_propagation(wf , vpot , dx , dt):
35

36 n = wf.size
37 twf = np.zeros(n, dtype=complex)
38 hwf = np.zeros(n, dtype=complex)
39

40 twf = wf
41 zfact = 1.0 + 0j
42 for iexp in range (1,5):
43 zfact = zfact *(-1j*dt)/iexp
44 hwf = ham_wf(twf , vpot , dx)
45 wf = wf + zfact*hwf
46 twf = hwf
47

48 return wf
49

50

51 # initial wavefunction parameters
52 x0 = -25.0
53 k0 = 0.85
54 sigma0 = 5.0
55

56 # time propagation parameters
57 Tprop = 80.0
58 dt = 0.005
59 #dt = 0.00905
60 nt = int(Tprop/dt)+1
61

62 # set the coordinate
63 xmin = -100.0
64 xmax = 100.0
65 n = 2500

30

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_matplotlib.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_matplotlib.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_matplotlib.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_matplotlib.py

66

67 dx = (xmax -xmin)/(n+1)
68 xj = np.zeros(n)
69

70 for i in range(n):
71 xj[i] = xmin + dx*(i+1)
72

73

74 # Initialize the wavefunction
75 wf = initialize_wf(xj, x0 , k0 , sigma0)
76 vpot = np.zeros(n)
77

78 # For loop for the time propagation
79 wavefunctions = []
80 for it in range(nt+1):
81 if (it % (nt //100) == 0):
82 wavefunctions.append(wf.copy())
83

84 wf = time_propagation(wf, vpot , dx, dt)
85 print(it, nt)
86

87 # Define function to update plot for each frame of the animation
88 def update_plot(frame):
89 plt.cla()
90 plt.xlim ([-100, 100])
91 plt.ylim ([-1.2, 1.2])
92 plt.plot(xj, np.real(wavefunctions[frame]), label="Real␣part␣of␣$\psi(x)$")
93 plt.plot(xj, np.imag(wavefunctions[frame]), label="Imaginary␣part␣of␣$\psi(x)$")
94 plt.xlabel(’x’)
95 plt.ylabel(’$\psi(x)$’)
96 plt.legend ()
97

98 # Create the animation
99 fig = plt.figure ()

100 ani = animation.FuncAnimation(fig , update_plot , frames=len(wavefunctions), interval =50)
101 #ani.save(’ wavefunction_animation .gif ’, writer=’ imagemagick ’)
102 ani.save(’wavefunction_animation.gif’, writer=’pillow ’)

6.4 Various Dynamics of One-Dimensional Quantum Wave Packets

Using the simulation code for one-dimensional quantum wave-packet dynamics developed up to
this point, let us explore the motion of one-dimensional wave packets in various problems.

6.4.1 Tunneling Phenomenon

Here we provide reference information on the dynamics of a one-dimensional wave packet related
to tunneling. In the code above, the potential energy V (x) was set to zero, but here we consider
the wave-packet dynamics under the following Gaussian potential:

V (x) = V0e
− x2

2σv . (48)

For example, set V0 = 0.735 a.u. and σv = 0.5 a.u., and use an initial wave function of the form
of Eq. (39). With k0 = 0.85 a.u., x0 = −25 a.u., and σ0 = 5, run the calculation and create a
movie of the wave-packet dynamics. Also vary the potential height V0 and the potential width σv,
run simulations, and become familiar with the tunneling phenomenon. You can refer to Source
Code 17.

6.4.2 Coherent State in a Harmonic Potential

Here we provide reference information on the dynamics of a quantum wave packet in a harmonic
potential. A harmonic potential is a quadratic potential given by

V (x) =
K

2
x2. (49)

Here, K is the spring constant. As a trial, set K = 1 a.u. and run the calculation. Use Eq. (39)
for the initial wave function. With k0 = 0 a.u., x0 = −2 a.u., and σ0 = 1, run the calculation and
create a movie of the wave-packet dynamics. Also refer to source code 18.

31

6.4.3 Anharmonic Potential

Building on Sec. 6.4.2, add an anharmonic term to the potential and examine how the quantum
wave-packet dynamics is affected. For example, study the dynamics of a wave packet under the
following potential:

V (x) =
K

2
x2 + 0.01x4. (50)

Also refer to source code 19.
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_tunnel.py

Source code 17: Example code for the tunneling phenomenon of a quantum wave packet

1 from numba import jit
2 from matplotlib import pyplot as plt
3 import numpy as np
4 import matplotlib.animation as animation
5 from matplotlib.animation import PillowWriter
6

7 # Initialize the wavefunction
8 def initialize_wf(xj, x0, k0, sigma0):
9 wf = np.exp(1j*k0*(xj-x0))*np.exp (-0.5*(xj-x0)**2/ sigma0 **2)

10 return wf
11

12 # Initialize potential
13 def initialize_vpot(xj):
14 v0 = 0.735
15 sigma = 0.5
16 return v0*np.exp (-0.5*(xj/sigma)**2)
17

18 # Operate the Hamiltonian to the wavefunction
19 @jit(nopython=True)
20 def ham_wf(wf , vpot , dx):
21

22 n = wf.size
23 hwf = np.zeros(n, dtype=np.complex128)
24

25 for i in range(1,n-1):
26 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
27

28 i = 0
29 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i])/(dx**2)
30 i = n-1
31 hwf[i] = -0.5*(-2.0*wf[i]+wf[i-1])/(dx**2)
32

33 hwf = hwf + vpot*wf
34

35 return hwf
36

37

38 # Time propagation from t to t+dt
39 def time_propagation(wf , vpot , dx , dt):
40

41 n = wf.size
42 twf = np.zeros(n, dtype=complex)
43 hwf = np.zeros(n, dtype=complex)
44

45 twf = wf
46 zfact = 1.0 + 0j
47 for iexp in range (1,5):
48 zfact = zfact *(-1j*dt)/iexp
49 hwf = ham_wf(twf , vpot , dx)
50 wf = wf + zfact*hwf
51 twf = hwf
52

53 return wf
54

55

56 # initial wavefunction parameters
57 x0 = -25.0
58 k0 = 0.85
59 sigma0 = 5.0

32

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_tunnel.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_tunnel.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_tunnel.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_tunnel.py

60

61 # time propagation parameters
62 Tprop = 80.0
63 dt = 0.005
64 #dt = 0.00905
65 nt = int(Tprop/dt)+1
66

67 # set the coordinate
68 xmin = -100.0
69 xmax = 100.0
70 n = 2500
71

72 dx = (xmax -xmin)/(n+1)
73 xj = np.zeros(n)
74

75 for i in range(n):
76 xj[i] = xmin + dx*(i+1)
77

78

79 # Initialize the wavefunction
80 wf = initialize_wf(xj, x0 , k0 , sigma0)
81 #vpot = np.zeros(n)
82 vpot = initialize_vpot(xj)
83

84 # For loop for the time propagation
85 wavefunctions = []
86 for it in range(nt+1):
87 if (it % (nt //100) == 0):
88 wavefunctions.append(wf.copy())
89

90 wf = time_propagation(wf, vpot , dx, dt)
91 print(it, nt)
92

93 # Define function to update plot for each frame of the animation
94 def update_plot(frame):
95 plt.cla()
96 plt.xlim ([-100, 100])
97 plt.ylim ([-1.2, 1.2])
98 plt.plot(xj, np.real(wavefunctions[frame]), label="Real␣part␣of␣$\psi(x)$")
99 plt.plot(xj, np.imag(wavefunctions[frame]), label="Imaginary␣part␣of␣$\psi(x)$")

100 plt.plot(xj, vpot , label="$V(x)$")
101 plt.xlabel(’x’)
102 plt.ylabel(’$\psi(x)$’)
103 plt.legend ()
104

105 # Create the animation
106 fig = plt.figure ()
107 ani = animation.FuncAnimation(fig , update_plot , frames=len(wavefunctions), interval =50)
108 #ani.save(’ wavefunction_animation .gif ’, writer=’ imagemagick ’)
109 ani.save(’wavefunction_animation.gif’, writer=’pillow ’)

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_harmonic.py

Source code 18: Example code for quantum wave-packet dynamics in a harmonic potential

1 from numba import jit
2 from matplotlib import pyplot as plt
3 import numpy as np
4 import matplotlib.animation as animation
5 from matplotlib.animation import PillowWriter
6

7 # Initialize the wavefunction
8 def initialize_wf(xj, x0, k0, sigma0):
9 wf = np.exp(1j*k0*(xj-x0))*np.exp (-0.5*(xj-x0)**2/ sigma0 **2)

10 return wf
11

12 # Initialize potential
13 def initialize_vpot(xj):
14 k0 = 1.0
15 return 0.5*k0*xj**2
16

17 # Operate the Hamiltonian to the wavefunction
18 @jit(nopython=True)
19 def ham_wf(wf , vpot , dx):
20

33

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_harmonic.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_harmonic.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_harmonic.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_harmonic.py

21 n = wf.size
22 hwf = np.zeros(n, dtype=np.complex128)
23

24 for i in range(1,n-1):
25 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
26

27 i = 0
28 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i])/(dx**2)
29 i = n-1
30 hwf[i] = -0.5*(-2.0*wf[i]+wf[i-1])/(dx**2)
31

32 hwf = hwf + vpot*wf
33

34 return hwf
35

36

37 # Time propagation from t to t+dt
38 def time_propagation(wf , vpot , dx , dt):
39

40 n = wf.size
41 twf = np.zeros(n, dtype=complex)
42 hwf = np.zeros(n, dtype=complex)
43

44 twf = wf
45 zfact = 1.0 + 0j
46 for iexp in range (1,5):
47 zfact = zfact *(-1j*dt)/iexp
48 hwf = ham_wf(twf , vpot , dx)
49 wf = wf + zfact*hwf
50 twf = hwf
51

52 return wf
53

54

55 # initial wavefunction parameters
56 x0 = -2.0
57 k0 = 0.00
58 sigma0 = 1.0
59

60 # time propagation parameters
61 Tprop = 40.0
62 dt = 0.005
63 #dt = 0.00905
64 nt = int(Tprop/dt)+1
65

66 # set the coordinate
67 xmin = -10.0
68 xmax = 10.0
69 n = 250
70

71 dx = (xmax -xmin)/(n+1)
72 xj = np.zeros(n)
73

74 for i in range(n):
75 xj[i] = xmin + dx*(i+1)
76

77

78 # Initialize the wavefunction
79 wf = initialize_wf(xj, x0 , k0 , sigma0)
80 #vpot = np.zeros(n)
81 vpot = initialize_vpot(xj)
82

83 # For loop for the time propagation
84 wavefunctions = []
85 for it in range(nt+1):
86 if (it % (nt //100) == 0):
87 wavefunctions.append(wf.copy())
88

89 wf = time_propagation(wf, vpot , dx, dt)
90 print(it, nt)
91

92 # Define function to update plot for each frame of the animation
93 def update_plot(frame):
94 plt.cla()
95 plt.xlim([-5, 5])
96 plt.ylim ([-1.2, 5.0])
97 plt.plot(xj, np.real(wavefunctions[frame]), label="Real␣part␣of␣$\psi(x)$")
98 plt.plot(xj, np.imag(wavefunctions[frame]), label="Imaginary␣part␣of␣$\psi(x)$")
99 plt.plot(xj, np.abs(wavefunctions[frame])**2, label="␣$|\psi(x)|^2$␣")

100 plt.plot(xj, vpot , label="$V(x)$")

34

101 plt.xlabel(’x’)
102 plt.ylabel(’$\psi(x)$’)
103 plt.legend ()
104

105 # Create the animation
106 fig = plt.figure ()
107 ani = animation.FuncAnimation(fig , update_plot , frames=len(wavefunctions), interval =150)
108 #ani.save(’ wavefunction_animation .gif ’, writer=’ imagemagick ’)
109 ani.save(’wavefunction_animation.gif’, writer=’pillow ’)

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_anharmonic.py

Source code 19: Example code for quantum wave-packet dynamics in an anharmonic potential

1 from numba import jit
2 from matplotlib import pyplot as plt
3 import numpy as np
4 import matplotlib.animation as animation
5 from matplotlib.animation import PillowWriter
6

7 # Initialize the wavefunction
8 def initialize_wf(xj, x0, k0, sigma0):
9 wf = np.exp(1j*k0*(xj-x0))*np.exp (-0.5*(xj-x0)**2/ sigma0 **2)

10 return wf
11

12 # Initialize potential
13 def initialize_vpot(xj):
14 k0 = 1.0
15 return 0.5*k0*xj **2+0.01* xj**4
16

17 # Operate the Hamiltonian to the wavefunction
18 @jit(nopython=True)
19 def ham_wf(wf , vpot , dx):
20

21 n = wf.size
22 hwf = np.zeros(n, dtype=np.complex128)
23

24 for i in range(1,n-1):
25 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
26

27 i = 0
28 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i])/(dx**2)
29 i = n-1
30 hwf[i] = -0.5*(-2.0*wf[i]+wf[i-1])/(dx**2)
31

32 hwf = hwf + vpot*wf
33

34 return hwf
35

36

37 # Time propagation from t to t+dt
38 def time_propagation(wf , vpot , dx , dt):
39

40 n = wf.size
41 twf = np.zeros(n, dtype=complex)
42 hwf = np.zeros(n, dtype=complex)
43

44 twf = wf
45 zfact = 1.0 + 0j
46 for iexp in range (1,5):
47 zfact = zfact *(-1j*dt)/iexp
48 hwf = ham_wf(twf , vpot , dx)
49 wf = wf + zfact*hwf
50 twf = hwf
51

52 return wf
53

54

55 # initial wavefunction parameters
56 x0 = -2.0
57 k0 = 0.00
58 sigma0 = 1.0
59

60 # time propagation parameters
61 Tprop = 40.0

35

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_anharmonic.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_anharmonic.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_anharmonic.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_anharmonic.py

62 dt = 0.005
63 #dt = 0.00905
64 nt = int(Tprop/dt)+1
65

66 # set the coordinate
67 xmin = -10.0
68 xmax = 10.0
69 n = 250
70

71 dx = (xmax -xmin)/(n+1)
72 xj = np.zeros(n)
73

74 for i in range(n):
75 xj[i] = xmin + dx*(i+1)
76

77

78 # Initialize the wavefunction
79 wf = initialize_wf(xj, x0 , k0 , sigma0)
80 #vpot = np.zeros(n)
81 vpot = initialize_vpot(xj)
82

83 # For loop for the time propagation
84 wavefunctions = []
85 for it in range(nt+1):
86 if (it % (nt //100) == 0):
87 wavefunctions.append(wf.copy())
88

89 wf = time_propagation(wf, vpot , dx, dt)
90 print(it, nt)
91

92 # Define function to update plot for each frame of the animation
93 def update_plot(frame):
94 plt.cla()
95 plt.xlim([-5, 5])
96 plt.ylim ([-1.2, 5.0])
97 plt.plot(xj, np.real(wavefunctions[frame]), label="Real␣part␣of␣$\psi(x)$")
98 plt.plot(xj, np.imag(wavefunctions[frame]), label="Imaginary␣part␣of␣$\psi(x)$")
99 plt.plot(xj, np.abs(wavefunctions[frame])**2, label="␣$|\psi(x)|^2$␣")

100 plt.plot(xj, vpot , label="$V(x)$")
101 plt.xlabel(’x’)
102 plt.ylabel(’$\psi(x)$’)
103 plt.legend ()
104

105 # Create the animation
106 fig = plt.figure ()
107 ani = animation.FuncAnimation(fig , update_plot , frames=len(wavefunctions), interval =150)
108 #ani.save(’ wavefunction_animation .gif ’, writer=’ imagemagick ’)
109 ani.save(’wavefunction_animation.gif’, writer=’pillow ’)

6.4.4 Harmonic Potential: Expectation Values of Position and Momentum, and
Ehrenfest’s Theorem

Here we return to the harmonic potential problem (6.4.2 section) and investigate the time evolution
of the expectation values of position and momentum. We also compute the time evolution of the
expectation value of the force and verify numerically that Ehrenfest’s theorem holds. Below we
list the basic quantum-mechanical relations needed.

The time derivative of the expectation value of position is proportional to the expectation
value of momentum:

d

dt
⟨x(t)⟩ = d

dt

∫
dxψ∗(x, t)xψ(x, t) =

∫
dxψ∗(x, t)

[
x, Ĥ

]
ih̄

ψ(x, t) =

∫
dxψ∗(x, t)

p̂x
m
ψ(x, t) =

⟨p(t)⟩
m

.

(51)

In general, the time derivative of the expectation value of an operator Â can be written as

d

dt
⟨A(t)⟩ = ⟨[A,H]⟩. (52)

Furthermore, the second time derivative of the expectation value of position can be evaluated

36

as follows:

d2

dt2
⟨x(t)⟩ = 1

m

d

dt
⟨p(t)⟩ = 1

m

〈[
px, Ĥ

]
ih̄

〉
=

1

m

〈
−∂V (x)

∂x

〉
. (53)

This equation shows that, in quantum mechanics, Newton’s equation of motion holds for expecta-
tion values; this is known as Ehrenfest’s theorem. To check that Ehrenfest’s theorem holds, create
your own code like Source Code 20 and compute the expectation values of position, momentum,
and force.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_harmonic_expectation.py

Source code 20: Example code for the time evolution of expectation values in quantum wave-packet
dynamics in a harmonic potential

1 from numba import jit
2 from matplotlib import pyplot as plt
3 import numpy as np
4 import matplotlib.animation as animation
5 from matplotlib.animation import PillowWriter
6

7 # Initialize the wavefunction
8 def initialize_wf(xj, x0, k0, sigma0):
9 wf = np.exp(1j*k0*(xj-x0))*np.exp (-0.5*(xj-x0)**2/ sigma0 **2)

10 return wf
11

12 # Initialize potential
13 def initialize_vpot(xj):
14 k0 = 1.0
15 return 0.5*k0*xj**2
16

17 # Operate the Hamiltonian to the wavefunction
18 @jit(nopython=True)
19 def ham_wf(wf , vpot , dx):
20

21 n = wf.size
22 hwf = np.zeros(n, dtype=np.complex128)
23

24 for i in range(1,n-1):
25 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
26

27 i = 0
28 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i])/(dx**2)
29 i = n-1
30 hwf[i] = -0.5*(-2.0*wf[i]+wf[i-1])/(dx**2)
31

32 hwf = hwf + vpot*wf
33

34 return hwf
35

36

37 # Time propagation from t to t+dt
38 def time_propagation(wf , vpot , dx , dt):
39

40 n = wf.size
41 twf = np.zeros(n, dtype=complex)
42 hwf = np.zeros(n, dtype=complex)
43

44 twf = wf
45 zfact = 1.0 + 0j
46 for iexp in range (1,5):
47 zfact = zfact *(-1j*dt)/iexp
48 hwf = ham_wf(twf , vpot , dx)
49 wf = wf + zfact*hwf
50 twf = hwf
51

52 return wf
53

54 # Time propagation from t to t+dt
55 def calc_expectation_values(wf,xj,vpot):
56

57 dx = xj[1]-xj[0]

37

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_harmonic_expectation.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_harmonic_expectation.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_harmonic_expectation.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_harmonic_expectation.py

58 norm = np.sum(np.abs(wf)**2)*dx
59 x_exp = np.sum(xj*np.abs(wf)**2)*dx
60 x_exp = x_exp/norm
61

62 n = wf.size
63 pwf = np.zeros(n, dtype=complex)
64

65 for i in range(1,n-1):
66 pwf[i] = -1j*(wf[i+1]-wf[i-1]) /(2.0* dx)
67

68 p_exp = np.real(np.sum(np.conjugate(wf)*pwf)*dx)
69 p_exp = p_exp/norm
70

71

72 n = wf.size
73 twf = np.zeros(n, dtype=complex)
74

75 for i in range(1,n-1):
76 twf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
77

78

79 Ekin = np.real(np.sum(np.conjugate(wf)*twf)*dx)
80 Ekin = Ekin/norm
81

82 Epot = np.real(np.sum(np.abs(wf)**2* vpot)*dx)
83 Epot = Epot/norm
84

85 return x_exp ,p_exp ,norm , Ekin , Epot
86

87

88 # initial wavefunction parameters
89 x0 = -2.0
90 k0 = 0.00
91 sigma0 = 1.0
92

93 # time propagation parameters
94 Tprop = 40.0
95 dt = 0.005
96 #dt = 0.00905
97 nt = int(Tprop/dt)+1
98

99 # set the coordinate
100 xmin = -10.0
101 xmax = 10.0
102 n = 250
103

104 dx = (xmax -xmin)/(n+1)
105 xj = np.zeros(n)
106

107 for i in range(n):
108 xj[i] = xmin + dx*(i+1)
109

110

111 # Initialize the wavefunction
112 wf = initialize_wf(xj, x0 , k0 , sigma0)
113 #vpot = np.zeros(n)
114 vpot = initialize_vpot(xj)
115

116 # For expectation values
117 tt = np.zeros(nt+1)
118 xt = np.zeros(nt+1)
119 pt = np.zeros(nt+1)
120 norm_t = np.zeros(nt+1)
121 Ekin_t = np.zeros(nt+1)
122 Epot_t = np.zeros(nt+1)
123

124 # For loop for the time propagation
125 wavefunctions = []
126 for it in range(nt+1):
127 if (it % (nt //100) == 0):
128 wavefunctions.append(wf.copy())
129

130 tt[it] = dt*it
131 xt[it], pt[it], norm_t[it], Ekin_t[it], Epot_t[it]= calc_expectation_values(wf ,xj,vpot)
132

133 wf = time_propagation(wf, vpot , dx, dt)
134 print(it, nt)
135

136 # Output the expectation value
137 plt.plot(tt ,xt, label="x(t)")

38

138 plt.plot(tt ,pt, label="p(t)")
139 plt.plot(tt ,norm_t , label="norm(t)")
140 plt.xlabel(’t’)
141 plt.ylabel(’Quantities ’)
142 plt.legend ()
143

144 plt.savefig("expectation_value.pdf")
145 plt.cla()
146

147 plt.plot(tt ,Ekin_t , label="Kinetic␣energy")
148 plt.plot(tt ,Epot_t , label="Potential␣energy")
149 plt.plot(tt ,Ekin_t+Epot_t , label="Total␣energy")
150 plt.xlabel(’t’)
151 plt.ylabel(’Energy ’)
152 plt.legend ()
153

154 plt.savefig("expectation_value_energy.pdf")
155

156 # Define function to update plot for each frame of the animation
157 def update_plot(frame):
158 plt.cla()
159 plt.xlim([-5, 5])
160 plt.ylim ([-1.2, 5.0])
161 plt.plot(xj, np.real(wavefunctions[frame]), label="Real␣part␣of␣$\psi(x)$")
162 plt.plot(xj, np.imag(wavefunctions[frame]), label="Imaginary␣part␣of␣$\psi(x)$")
163 plt.plot(xj, np.abs(wavefunctions[frame])**2, label="␣$|\psi(x)|^2$␣")
164 plt.plot(xj, vpot , label="$V(x)$")
165 plt.xlabel(’x’)
166 plt.ylabel(’$\psi(x)$’)
167 plt.legend ()
168

169 # Create the animation
170 fig = plt.figure ()
171 ani = animation.FuncAnimation(fig , update_plot , frames=len(wavefunctions), interval =150)
172 #ani.save(’ wavefunction_animation .gif ’, writer=’ imagemagick ’)
173 ani.save(’wavefunction_animation.gif’, writer=’pillow ’)

39

7 Ground State and Excited State Calculations of One-
Dimensional Quantum Systems

In this section, we solve the time-independent Schrödinger equation numerically and investigate
the ground state and excited states of one-dimensional quantum systems.

7.1 Review of Linear Algebra

Before performing numerical calculations of the time-independent Schrödinger equation, let us
review some fundamental aspects of linear algebra. Here, consider a square matrix A of size n×n
with complex entries. The element in the i-th row and j-th column of matrix A is denoted by aij .

The transpose of a matrix is the operation of interchanging its rows and columns, and the
transpose of matrix A is denoted as AT . Therefore, for the matrix B defined by B = AT , the
element bij of B and the element of A are related as follows:

bij = aji. (54)

The operation of taking the transpose of a matrix and then taking the complex conjugate is
called the Hermitian conjugate, and the Hermitian conjugate of matrix A is denoted as A†. Thus,
for the matrix C defined by C = A†, the element cij of C and the element of A are related as
follows:

cij = a∗ji. (55)

Moreover, a matrix A for which the Hermitian conjugate A† equals the original matrix (A† = A)
is called a Hermitian matrix. When A is a Hermitian matrix, its eigenvalues are real numbers,
and one can find n mutually orthogonal eigenvectors. Let us verify this.

7.1.1 Proof that the Eigenvalues of a Hermitian Matrix are Real

Let λi and ui denote an eigenvalue and the corresponding eigenvector (column vector) of matrix
A, respectively. Then the following relation holds:

Aui = λiui (56)

Multiplying both sides of Eq. (56) from the left by u†
i , we obtain:

u†
iAui = λi(u

†
iui) (57)

Next, taking the Hermitian conjugate of Eq. (56), we get:

u†
iA

† = u†
iA = λ∗iu

†
i (58)

Furthermore, multiplying both sides of Eq. (58) from the right by ui, we obtain:

u†
iAui = λ∗i (u

†
iui) (59)

Since the norm of the eigenvector ui, given by |ui|2 = (u†
iui), is not zero, comparing Eq. (57)

with Eq. (59) shows that λi = λ∗i . In other words, we can confirm that the eigenvalues of a
Hermitian matrix are real numbers.

40

7.1.2 Proof that eigenvectors corresponding to distinct eigenvalues of a Hermitian
matrix are orthogonal

Next, for Hermitian matrices, we show that eigenvectors corresponding to distinct eigenvalues are
orthogonal. Let λi and λj be two distinct eigenvalues of a Hermitian matrix, and let ui and uj

be the eigenvectors corresponding to them, respectively. Then the following equations hold:

Aui = λiui, (60)

Auj = λjuj . (61)

Also, by taking the Hermitian conjugate of Eq. (61), we obtain

u†
jA = λju

†
j . (62)

Furthermore, multiplying Eq. (60) on the left by u†
j , and multiplying Eq. (62) on the right by

ui, we obtain the following relations:

u†
jAui = λi(u

†
jui), (63)

u†
jAui = λj(u

†
jui). (64)

Taking the difference between Eq. (63) and Eq. (64) yields

(λi − λj)(u
†
jui) = 0. (65)

Since λi and λj are distinct eigenvalues by assumption, we have (λi − λj) ̸= 0, and hence from

Eq. (65) it follows that (u†
jui) = 0 must hold. Therefore, eigenvectors corresponding to different

eigenvalues of a Hermitian matrix are orthogonal.

7.1.3 On the orthogonality of eigenvectors corresponding to equal eigenvalues of a
Hermitian matrix (the case of degenerate eigenvalues)

Next, we discuss the orthogonality of eigenvectors in the case where a Hermitian matrix has degen-
erate eigenvalues. Here, suppose that the eigenvalue λ of a Hermitian matrix is m-fold degenerate
and that m linearly independent eigenvectors u1,u2, · · · ,um have already been obtained. In
Sec. 7.1.2, we showed that eigenvectors corresponding to distinct eigenvalues of a Hermitian ma-
trix are orthogonal; however, the eigenvalues of the eigenvectors considered here (u1,u2, · · · ,um)
are equal, so in general these eigenvectors are not orthogonal. Nevertheless, using the fact that
any linear combination of these eigenvectors is again an eigenvector with the same eigenvalue λ,
we can construct a new set of orthonormal eigenvectors.

Here we explain how to construct an orthonormal set of eigenvectors using the Gram–Schmidt
orthonormalization method. To construct an orthonormal set from the degenerate eigenvectors
(u1,u2, · · · ,um), first normalize the initial eigenvector as follows:

ũ1 =
1√

(u†
1u1)

u1. (66)

Next, orthogonalize the second eigenvector u2 against the vector ũ1 and introduce the inter-
mediate vector ū2 as

ū2 = u2 − ũ1(ũ
†
1u2). (67)

By taking the inner product of ū2 with ũ1, it is easy to verify that the two vectors are orthogonal.
Normalizing this intermediate vector ū2, we introduce the second orthonormalized eigenvector as

ũ2 =
1√

(ū†
2ū2)

ū2. (68)

41

Similarly, orthogonalize the third eigenvector u3 against the vectors ũ1 and ũ2, and introduce
the intermediate vector ū3 as

ū3 = u3 − ũ1(ũ
†
1u3)− ũ2(ũ

†
2u3). (69)

By normalizing this intermediate vector ū3, we introduce the third orthonormalized eigenvector
as

ũ3 =
1√

(ū†
3ū3)

ū3. (70)

Repeating the same procedure, orthogonalize the k-th eigenvector uk against ũ1, ũ2, · · · , ũk−1

and introduce the intermediate vector ūk as

ūk = uk −
k−1∑
i=1

ũi(ũ
†
iuk). (71)

By normalizing this intermediate vector ūk, we introduce the k-th orthonormalized eigenvector as

ũk =
1√

(ū†
kūk)

ūk. (72)

By repeating this procedure up to k = m, we can construct, from the original set of m
eigenvectors (u1,u2, · · · ,um), an orthonormal set of vectors (ũ1, ũ2, · · · , ũm). Moreover, since
each newly introduced vector (ũ1, ũ2, · · · , ũm) is defined as a linear combination of the original
eigenvectors (u1,u2, · · · ,um), the orthonormal set (ũ1, ũ2, · · · , ũm) also consists of eigenvectors
belonging to the eigenvalue λ of the matrix A.

7.1.4 A brief summary of properties of eigenvalues and eigenvectors of Hermitian
matrices

As seen in Sec. 7.1.2, the eigenvalues of a Hermitian matrix are real. Also, as seen in Sec. 7.1.3
and Sec. 7.1.3, a set of eigenvectors of a Hermitian matrix can be chosen to be an orthonormal
set.

7.2 Numerical computation of the diagonalization of a real symmetric
matrix

Here, taking a 3× 3 real symmetric matrix as an example, we learn Python code for diagonalizing
a matrix. Consider the following real symmetric matrix:

A =

0 1 0
1 0 1
0 1 0

 (73)

First, let us find the eigenvalues and eigenvectors of this real symmetric matrix. The eigenvalues
λ can be obtained as the solutions of the following equation:

|A− λI| = 0. (74)

Next, let us write code to solve this eigenvalue problem numerically. The following code uses
NumPy’s linear algebra functions (numpy.linalg) to diagonalize a real symmetric matrix and
obtain its eigenvalues and eigenvectors. Here, in particular, we use the diagonalization function
specialized for real symmetric (and Hermitian) matrices, numpy.linalg.eigh. Read the doc-
umentation for NumPy’s numpy.linalg.eigh ((https://numpy.org/doc/stable/reference/

42

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh

generated/numpy.linalg.eigh.html#numpy.linalg.eigh)) to find out what kind of function
it is.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/eigen_

3x3.py

Source code 21: Example code for diagonalizing a 3× 3 real symmetric matrix

1 import numpy as np
2

3 matrix = np.array ([[0.0 , 1.0, 0.0],
4 [1.0, 0.0, 1.0],
5 [0.0, 1.0, 0.0]])
6

7 eigenvalues , eigenvectors = np.linalg.eigh(matrix)
8

9 print(’First␣eigenvalue␣␣=’,eigenvalues [0])
10 print(’Second␣eigenvalue␣=’,eigenvalues [1])
11 print(’Third␣eigenvalue␣␣=’,eigenvalues [2])
12 print()
13

14 print(’First␣eigenvector ’)
15 print(eigenvectors [:,0])
16 print()
17

18 print(’Second␣eigenvector ’)
19 print(eigenvectors [:,1])
20 print()
21

22 print(’Third␣eigenvector ’)
23 print(eigenvectors [:,2])
24 print()

Run Source Code 21 and compare the analytically obtained eigenvalues and eigenvectors with
those obtained by numerical computation.

7.3 Solving the Time-Independent Schrödinger Equation Using the Real-
Space Finite Difference Method

7.3.1 Infinite Square Well Potential Problem

Here, we will learn how to solve the time-independent Schrödinger equation using the real-space
method introduced in Sec. 6.1. As an example, let us consider the problem of an infinite square
well potential: [

− h̄2

2m

∂2

∂x2
+ V (x)

]
un(x) = Eu(x), (75)

V (x) =

{
0 −L

2 ≤ x ≤ L
2

∞ otherwise
(76)

Here, since the potential V (x) diverges for |x| > L/2, the wavefunction u(x) must vanish
in that region. That is, the wavefunction u(x) can take finite values only within the region
(−L/2 ≤ x ≤ L/2). We divide this region into N grid points. For later convenience, let us define
the coordinate of the (−1)-th point as x−1 = −L/2 and that of the N -th point as xN = L/2.
Then, the position of the j-th point can be written as

xj = −L
2
+ δx× (j + 1). (77)

Here, the grid spacing ∆x is defined as

∆x =
L

N + 1
. (78)

43

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/eigen_3x3.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/eigen_3x3.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/eigen_3x3.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/eigen_3x3.py

Next, let us discretize Eq. (75). Denoting the wavefunction value at the j-th grid point xj as
uj = u(xj), and approximating the second derivative with the three-point finite difference formula,
we can approximate Eq. (75) by the following system of equations:

− h̄2

2m

−2u0 + u1
∆x2

= Eu0 (79)

− h̄2

2m

u0 − 2u1 + u2
∆x2

= Eu1 (80)

...

− h̄2

2m

uj−1 − 2uj + uj+1

∆x2
= Euj (81)

...

− h̄2

2m

uN−3 − 2uN−2 + uN−1

∆x2
= EuN−2 (82)

− h̄2

2m

uN−2 − 2uN−1

∆x2
= EuN−1 (83)

Here, note that due to the boundary condition (u(x) = 0 for |x| ≥ L/2), we have u−1 = uN = 0.
Carefully observing the above set of equations, we see that they can be rewritten as an eigen-

value problem for a matrix:

− h̄2

2m

1

∆x2



−2 1 0 · · · 0

1 −2 1
. . . 0

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 0 0 1 −2




u0
u1
...

uN−2

uN−1

 = E


u0
u1
...

uN−2

uN−1

 (84)

Thus, the original Schrödinger equation, Eq. (75), can be rewritten, using the finite difference
approximation, as the matrix eigenvalue problem in Eq. (84).

Using the program for matrix diagonalization learned in Sec. 7.2 as reference, try implementing
your own program to solve the eigenvalue problem represented by Eq. (84) for the infinite square
well potential, and obtain its eigenvalues and eigenfunctions. Compare the numerical results with
the analytical ones.

For reference, the exact eigenvalues En and eigenfunctions un(x) of Eq. (75) are:

En = n2
π2h̄2

2mL2
(85)

un(x) =


√

2
L cos

(
nπ
L x

)
(n = odd), (−L/2 < x < L/2)√

2
L sin

(
nπ
L x

)
(n = even), (−L/2 < x < L/2)

0 (otherwise)

(86)

For reference, a sample Python code is provided below:
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

grid_infinite_well.py

Source code 22: Sample code for solving the infinite square well using the real-space finite difference
method

44

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_infinite_well.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_infinite_well.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_infinite_well.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_infinite_well.py

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 # Constants
5 mass = 1.0
6 hbar = 1.0
7

8 # Define grid
9 num_grid = 64

10 length = 20.0
11 dx = length / (num_grid + 1)
12 xj = np.linspace(-length / 2 + dx, length / 2 - dx , num_grid)
13

14 # Hamiltonian Matrix
15 ham_mat = np.zeros((num_grid ,num_grid))
16

17 for i in range(num_grid):
18 for j in range(num_grid):
19 if(i == j):
20 ham_mat[i,j]= -0.5* hbar **2/ mass *(-2.0/dx**2)
21 elif(np.abs(i-j) == 1):
22 ham_mat[i,j]= -0.5* hbar **2/ mass *(1.0/ dx**2)
23

24 # Calculate eigenvectors and eigenvalues
25 eigenvalues , eigenvectors = np.linalg.eigh(ham_mat)
26

27 # Normalize and check the sign
28 wf = eigenvectors/np.sqrt(dx)
29 for i in range(num_grid):
30 sign = np.sign(wf[num_grid //2,i])
31 if(sign != 0.0):
32 wf[:,i] = wf[:,i]*sign
33

34

35 def exact_eigenvalue(n):
36 """ Calculate exact eigenvalue for particle in a box."""
37 return n**2 * np.pi**2 * hbar **2 / (2.0 * mass * length **2)
38

39 # Print eigenvalues and errors
40 for i in range (3):
41 print(f"{i}-th␣eigenvalue␣=␣{eigenvalues[i]}")
42 print(f"{i}-th␣eigenvalue␣Error␣=␣{eigenvalues[i]␣-␣exact_eigenvalue(i␣+␣1)}")
43 print()
44

45 # Plotting
46 plt.figure(figsize =(8 ,6))
47 plt.plot(xj , wf[:, 0], label="Ground␣state␣(calc.)")
48 plt.plot(xj , np.sqrt (2.0/ length)*np.cos(np.pi*xj/length), label="Ground␣state␣(exact.)",

linestyle=’dashed ’)
49 plt.plot(xj , wf[:, 1], label="1st␣excited␣state")
50 plt.plot(xj , np.sqrt (2.0/ length)*np.sin (2.0*np.pi*xj/length), label="1st␣excited␣state␣(exact.)

", linestyle=’dashed ’)
51 plt.plot(xj , wf[:, 2], label="2nd␣excited␣state")
52 plt.plot(xj , np.sqrt (2.0/ length)*np.cos (3.0*np.pi*xj/length), label="2nd␣excited␣state␣(exact.)

", linestyle=’dashed ’)
53

54 plt.xlim([-length /2.0, length /2.0])
55 plt.xlabel(’x’)
56 plt.ylabel(’wave␣functions ’)
57 plt.legend ()
58 plt.savefig(’fig_quantum_well_wf.pdf’)
59 plt.show()

By running Source Code 22, one can obtain the eigenvalues and wavefunctions of the infinite
square well potential. Some comments on the code are given below.

In line 28 of Source Code 22, the command wf = eigenvectors/np.sqrt(dx) normalizes
the eigenvectors obtained from the diagonalization routine np.linalg.eigh. The eigenvectors u
returned by np.linalg.eigh are normalized according to

|u|2 =

N−1∑
j=0

|uj |2 = 1. (87)

However, in typical quantum mechanics problems, it is more convenient to normalize eigen-

45

functions u(x) such that ∫ L/2

−L/2

dx|u(x)|2 = 1. (88)

Recalling that u(xj) = uj , the normalization condition, Eq. (89), can be rewritten as∫ L/2

−L/2

dx|u(x)|2 = 1. (89)

Thus, to convert an eigenvector originally normalized as in (87) into one normalized as in (??),
the following transformation is applied:

uj →
uj√
∆x

. (90)

This renormalization procedure is exactly what is implemented in line 28 of Source Code 22.
Figure 10 shows the wavefunctions output by the program.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.3

0.2

0.1

0.0

0.1

0.2

0.3

wa
ve

 fu
nc

tio
ns

Ground state (calc.)
Ground state (exact.)
1st excited state
1st excited state (exact.)
2nd excited state
2nd excited state (exact.)

Figure 10: Eigenfunctions of the infinite square well potential.

7.3.2 Ground and Excited States of the 1D Harmonic Oscillator

In Sec. 7.3.1, we worked on the numerical solution of the infinite square well potential. In this
section, let us consider the one-dimensional harmonic oscillator problem. The Schrödinger equation
for the 1D harmonic oscillator is written as[

− h̄2

2m

d2

dx2
+
k

2
x2

]
u(x) = Eu(x). (91)

By solving this differential equation under the boundary condition u(x) → 0 as |x| → ∞, we can
obtain the energy eigenvalues and eigenstates of the quantum harmonic oscillator. However, it
is not easy to handle wavefunctions at infinity numerically. In practice, for numerical eigenstate
calculations of quantum systems, instead of imposing boundary conditions at infinity, it is common
to impose them at a finite but sufficiently large distance. Specifically, we introduce a sufficiently

46

large length L and solve Eq. (91) under the boundary condition u(±L/2) = 0. If L is large
enough, the numerical solution approaches the exact solution with vanishing wavefunction at
infinity. From another perspective, inspired by Sec. 7.3.1, imposing u(±L/2) = 0 is equivalent to
placing infinitely high potential walls at x = ±L/2. If these walls are placed far from the region
of interest, they hardly affect the physical properties of the quantum system.

By following the infinite square well example, discretize the time-independent Schrödinger
equation and rewrite it as a matrix diagonalization problem. Then, write your own program to
obtain the eigenstates of the harmonic oscillator, and investigate the ground state and excited
states. Furthermore, consider the relation between the probability distributions derived from
high-energy excited states and the classical probability distribution of position.

For reference, the wavefunctions of the ground, first excited, and second excited states of the
harmonic oscillator are:

ψ0(x) =
(mω
πh̄

)1/4

e−
mω
2h̄ x2

,

ψ1(x) = x

√
2mω

h̄

(mω
πh̄

)1/4

e−
mω
2h̄ x2

,

ψ2(x) =
√
2

(
1− 2mωx2

h̄

)(mω
πh̄

)1/4

e−
mω
2h̄ x2

. (92)

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

grid_ho.py

Source code 23: Example code for calculating eigenvalues and eigenfunctions of the 1D harmonic
oscillator

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 # Constants
5 mass = 1.0
6 hbar = 1.0
7 kconst = 1.0
8

9 # Define grid
10 num_grid = 128
11 length = 15.0
12 dx = length / (num_grid + 1)
13 xj = np.linspace(-length / 2 + dx, length / 2 - dx , num_grid)
14

15 # Potential
16 vpot = 0.5* kconst*xj**2
17

18 # Hamiltonian Matrix
19 ham_mat = np.zeros((num_grid ,num_grid))
20

21 for i in range(num_grid):
22 for j in range(num_grid):
23 if(i == j):
24 ham_mat[i,j]= -0.5* hbar **2/ mass *(-2.0/dx**2) + vpot[i]
25 elif(np.abs(i-j) == 1):
26 ham_mat[i,j]= -0.5* hbar **2/ mass *(1.0/ dx**2)
27

28

29 # Calculate eigenvectors and eigenvalues
30 eigenvalues , eigenvectors = np.linalg.eigh(ham_mat)
31

32 # Normalize and check the sign
33 wf = eigenvectors/np.sqrt(dx)
34 for i in range(num_grid):
35 sign = np.sign(wf[num_grid //2,i])
36 if(sign != 0.0):
37 wf[:,i] = wf[:,i]*sign
38

39

40 def exact_eigenvalue(n):
41 """ Calculate exact eigenvalue for quantum harmonic oscillator ."""

47

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_ho.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_ho.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_ho.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_ho.py

42 return hbar * np.sqrt(kconst / mass) * (n + 0.5)
43

44 # Print eigenvalues and errors
45 for i in range (3):
46 print(f"{i}-th␣eigenvalue␣=␣{eigenvalues[i]}")
47 print(f"{i}-th␣eigenvalue␣Error␣=␣{eigenvalues[i]␣-␣exact_eigenvalue(i)}")
48 print()
49

50

51 # Plotting
52 omega = np.sqrt(kconst/mass)
53

54 # Ground state plot
55 plt.figure(figsize =(8, 6))
56 plt.plot(xj , wf[:, 0], label="Ground␣state␣(calc.)")
57 plt.plot(xj , (mass * omega / (np.pi * hbar))**(1.0 / 4.0) * np.exp(-mass * omega * xj**2 / (2.0

* hbar)),
58 label="Ground␣state␣(exact.)", linestyle=’dashed ’)
59 plt.xlim([-length / 2.0, length / 2.0])
60 plt.xlabel(’x’)
61 plt.ylabel(’wave␣functions ’)
62 plt.legend ()
63 plt.savefig(’fig_harmonic_oscillator_ground_state.pdf’)
64 plt.show()
65

66 # First excited state plot
67 plt.figure(figsize =(8, 6))
68 plt.plot(xj , wf[:, 1], label="1st␣excited␣state␣(calc.)")
69 plt.plot(xj , (mass * omega / (np.pi * hbar))**(1.0 / 4.0) * np.sqrt (2.0 * mass * omega / hbar)

* xj * np.exp(-mass * omega * xj**2 / (2.0 * hbar)),
70 label="1st␣excited␣state␣(exact.)", linestyle=’dashed ’)
71 plt.xlim([-length / 2.0, length / 2.0])
72 plt.xlabel(’x’)
73 plt.ylabel(’wave␣functions ’)
74 plt.legend ()
75 plt.savefig(’fig_harmonic_oscillator_1st_excited_state.pdf’)
76 plt.show()
77

78 # Second excited state plot
79 plt.figure(figsize =(8, 6))
80 plt.plot(xj , wf[:, 2], label="2nd␣excited␣state␣(calc.)")
81 plt.plot(xj , (mass * omega / (np.pi * hbar))**(1.0 / 4.0) * np.sqrt (0.5) * (1.0 - 2.0 * mass *

omega * xj**2 / hbar) * np.exp(-mass * omega * xj**2 / (2.0 * hbar)),
82 label="2nd␣excited␣state␣(exact.)", linestyle=’dashed ’)
83 plt.xlim([-length / 2.0, length / 2.0])
84 plt.xlabel(’x’)
85 plt.ylabel(’wave␣functions ’)
86 plt.legend ()
87 plt.savefig(’fig_harmonic_oscillator_2nd_excited_state.pdf’)
88 plt.show()

48

6 4 2 0 2 4 6
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

wa
ve

 fu
nc

tio
ns

Ground state (calc.)
Ground state (exact.)

6 4 2 0 2 4 6
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

wa
ve

 fu
nc

tio
ns

1st excited state (calc.)
1st excited state (exact.)

6 4 2 0 2 4 6
x

0.6

0.4

0.2

0.0

0.2

0.4

wa
ve

 fu
nc

tio
ns

2nd excited state (calc.)
2nd excited state (exact.)

Figure 11: Eigenfunctions of the harmonic oscillator potential.

Next, let us consider the classical probability distribution of a particle. For a classical harmonic
oscillator with energy E, suppose we measure the particle’s position at random times. Taking into

49

account that the sum of kinetic and potential energies equals E, the particle can only be found
within the interval (−

√
2E/k ≤ x ≤

√
2E/k). Furthermore, when measuring the particle’s

position at random times within this interval, the probability P (x) of finding the particle in a
small interval [x, x+ δx] is proportional to the inverse of the particle’s speed. That is,

P (x) ∼ 1

|v|
. (93)

Since the total energy E is given, the particle’s speed at each position x is expressed as

|v| =

√
2

m

(
E − 1

2
kx2

)
(94)

Therefore, the probability distribution P (x) of finding the particle at position x for a harmonic
oscillator with energy E is given by

P (x) =
1

π
√

2E
k − x2

(95)

Source Code 24 is a modified version of Source Code 23, which includes functionality to com-
pare classical and quantum probability distributions. Figure 12 shows a comparison between the
quantum probability distribution of the 64th eigenstate and the corresponding classical distribu-
tion.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

grid_ho_high_energy.py

Source code 24: Example code comparing high-energy states of the 1D harmonic oscillator with
the classical probability distribution

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 # Constants
5 mass = 1.0
6 hbar = 1.0
7 kconst = 1.0
8

9 # Define grid
10 num_grid = 512
11 length = 30.0
12 dx = length / (num_grid + 1)
13 xj = np.linspace(-length / 2 + dx, length / 2 - dx , num_grid)
14

15 # Potential
16 vpot = 0.5* kconst*xj**2
17

18 # Hamiltonian Matrix
19 ham_mat = np.zeros((num_grid ,num_grid))
20

21 for i in range(num_grid):
22 for j in range(num_grid):
23 if(i == j):
24 ham_mat[i,j]= -0.5* hbar **2/ mass *(-2.0/dx**2) + vpot[i]
25 elif(np.abs(i-j) == 1):
26 ham_mat[i,j]= -0.5* hbar **2/ mass *(1.0/ dx**2)
27

28

29 # Calculate eigenvectors and eigenvalues
30 eigenvalues , eigenvectors = np.linalg.eigh(ham_mat)
31

32 # Normalize and check the sign
33 wf = eigenvectors/np.sqrt(dx)
34 for i in range(num_grid):
35 sign = np.sign(wf[num_grid //2,i])
36 if(sign != 0.0):
37 wf[:,i] = wf[:,i]*sign

50

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_ho_high_energy.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_ho_high_energy.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_ho_high_energy.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_grid_ho_high_energy.py

38

39

40 def exact_eigenvalue(n):
41 """ Calculate exact eigenvalue for quantum harmonic oscillator ."""
42 return hbar * np.sqrt(kconst / mass) * (n + 0.5)
43

44 # Print eigenvalues and errors
45 for i in range (3):
46 print(f"{i}-th␣eigenvalue␣=␣{eigenvalues[i]}")
47 print(f"{i}-th␣eigenvalue␣Error␣=␣{eigenvalues[i]␣-␣exact_eigenvalue(i)}")
48 print()
49

50

51 # Plotting
52 omega = np.sqrt(kconst/mass)
53

54

55 # Calculate the probability distribution fo a highly -excited state
56 n_eigen = 64
57 Ene = eigenvalues[n_eigen]
58

59 prob_x = np.zeros(num_grid)
60 for i in range(num_grid):
61 if(2.0* Ene/kconst -xj[i]**2 < 0):
62 prob_x[i]=0.0
63 else:
64 prob_x[i]=1.0/(np.pi*np.sqrt (2.0* Ene/kconst -xj[i]**2))
65

66 plt.figure(figsize =(8 ,6))
67

68 plt.plot(xj , wf[:, n_eigen]**2, label="Quantum␣distribution")
69 plt.plot(xj , prob_x , label="Classical␣distribution")
70 plt.xlim([-length /2.0, length /2.0])
71 plt.xlabel(’x’)
72 plt.ylabel(’$|\psi(x)|^2$’)
73 plt.legend ()
74 plt.savefig(’harmonic_oscillator_high_energy_prob.pdf’)
75 plt.show()

15 10 5 0 5 10 15
x

0.0

0.1

0.2

0.3

0.4

|
(x

)|2

Quantum distribution
Classical distribution

Figure 12: Eigenfunction of the harmonic oscillator potential.

51

8 Quantum Dynamics under a Time-Dependent Hamilto-
nian

8.1 Time Evolution under a Time-Dependent Hamiltonian

In Sec. 6, we learned how to numerically solve the time-dependent Schrödinger equation under a
time-independent Hamiltonian. In this section, we extend that knowledge and study how to solve
the time-dependent Schrödinger equation when the Hamiltonian itself depends on time. Such
simulations can be applied, for example, to investigate electron dynamics in atoms under laser
fields.

To consider how to numerically solve the time-dependent Schrödinger equation, let us look at
the following equation involving a time-dependent Hamiltonian:

ih̄
d

dt
ψ(x, t) = Ĥ(t)ψ(x, t). (96)

When the Hamiltonian is time-independent (H(t) = H0), the formal solution of the Schrödinger
equation can be written as

ψ(x, t) = exp

[
− i

h̄
H0t

]
ψ(x, 0). (97)

However, when the Hamiltonian depends on time, the formal solution of the Schrödinger equation
cannot be written in this simple form. To obtain the formal solution in the time-dependent case,
we consider an small time-step evolution by advancing time by a small increment ∆t. If ∆t is taken
sufficiently small, the time variation of the Hamiltonian between t and t+∆t becomes negligible,
allowing us to ignore its time dependence during that interval. Using the formal solution for a
time-independent Hamiltonian, the time evolution from t0 to t0 +∆t can then be expressed as

ψ(x, t0 +∆t) = exp

[
− i

h̄
H(t0)∆t

]
ψ(x, t0). (98)

By repeatedly applying this small time-step evolution, we can obtain the solution of the
Schrödinger equation. For example, if we apply this process N times, the wavefunction at time
t = tN = ∆t×N is given by

ψ(x, tN) = exp

[
− i

h̄
H(tN−1)∆t

]
× exp

[
− i

h̄
H(tN−2)∆t

]
× · · ·

× exp

[
− i

h̄
H(t1)∆t

]
× exp

[
− i

h̄
H(t0)∆t

]
ψ(x, t0), (99)

where we have defined tj = t0 + j ×∆t.
Thus, by repeatedly performing small time-step evolutions using the Hamiltonian at each time

step, we can construct the solution to the time-dependent Schrödinger equation. In numerical
simulations, this same procedure is employed: Eq. (99) is used to iteratively compute the wave-
function’s time evolution.

Before solving the time-dependent Schrödinger equation, let us try to rewrite the formal solu-
tion in Eq. (99) into a more compact form. If the Hamiltonian were just a number rather than an
operator, the time evolution operator from t0 to tN could be written as

U(tN , t0) = exp

[
− i

h̄
H(tN−1)∆t

]
× · · · × exp

[
− i

h̄
H(t0)∆t

]
̸= exp

− i

h̄

N−1∑
j=0

H(tj)∆t

 . (100)

However, since the Hamiltonian is an operator and not just a number, such a simplification as in
Eq. (100) is not possible. In fact, expanding both sides in a Taylor series shows that the expansion

52

of the left-hand side involves products of Hamiltonians at different times (e.g., H(t2)H(t1)H(t0)),
which always appear ordered such that the Hamiltonian at an earlier time H(ti) is to the right of
any Hamiltonian at a later time H(tj). On the other hand, the expansion of the right-hand side
produces Hamiltonian products in all possible time orders (e.g., H(t1)H(t2)H(t0)). Therefore,
when Hamiltonians at different times do not commute, Eq. (100) cannot be rewritten in this way.

From another perspective, if we take each product of Hamiltonians appearing in the ex-
pansion of the right-hand side of Eq. (100) and rearrange them in chronological order (e.g.,
H(t2)H(t1)H(t0)), we obtain the same result as the expansion of the left-hand side, and equal-
ity holds. This rearrangement of operators according to time order is called the time-ordered
product (T-product), and it is expressed as

T {H(t0)H(t2)H(t1)} = H(t2)H(t1)H(t0). (101)

Using the time-ordered product, the time evolution operator in Eq. (99) can be expressed as

U(tN , t0) = exp

[
− i

h̄
H(tN−1)∆t

]
× exp

[
− i

h̄
H(tN−2)∆t

]
× · · ·

× exp

[
− i

h̄
H(t1)∆t

]
× exp

[
− i

h̄
H(t0)

]
=T

{
exp

[
− i

h̄

N−1∑
0

H(tj)∆t

]}

= T
{
exp

[
− i

h̄

∫ tN

t0

dtH(t)

]}
. (102)

In the last line, we have assumed that ∆t is sufficiently small so that the sum can be replaced
by an integral. In this way, even in the case of a time-dependent Hamiltonian, the time evolution
operator can be formally expressed using the time-ordered product.

8.2 Dynamics of a Quantum Wavepacket in an Oscillating Harmonic
Potential

As an example of a time-evolution calculation using a time-dependent Hamiltonian, let us simulate
the dynamics of a quantum wavepacket in a one-dimensional oscillating harmonic potential. The
equation to be solved is the time-dependent Schrödinger equation given by

ih̄
∂

∂t
ψ(x, t) = − h̄2

2m

∂2ψ(x, t)

∂x2
+
mω2

0

2
(x− xc(t))

2
ψ(x, t). (103)

Here, xc(t) is the center of the harmonic potential that moves with time. As the initial condition
of this equation, we adopt the ground state of the Hamiltonian at time t = 0. For simplicity, from
here on we set m = h̄ = ω0 = 1.

With respect to the natural frequency of this harmonic oscillator (ω0 = 1), let us perform
calculations for the following cases: (a) xc(t) moves on a sufficiently slow timescale, (b) xc(t)
moves on the same timescale, and (c) xc(t) moves on a sufficiently fast timescale. Specifically, for
the sufficiently slow case (a),

xc(t) = cos(Ωt) (104)

and let us run the calculation with Ω = 0.2ω0. Under the resonance condition (b),

xc(t) = cos(Ωt) (105)

and let us run the calculation with Ω = ω0. Furthermore, for the sufficiently fast case (c),

xc(t) = sin(Ωt) (106)

53

and let us run the calculation with Ω = 8ω0.
First, let us write code to obtain the ground state of the Hamiltonian of the harmonic oscillator.

This ground state will serve as the initial wavefunction for the time evolution. Source Code 25
below shows an example of Python code to obtain the ground state of the harmonic oscillator.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_td_ham_v1.py

Source code 25: Example code to obtain the ground state of the harmonic oscillator

1 from numba import jit
2 from matplotlib import pyplot as plt
3 import numpy as np
4 import matplotlib.animation as animation
5 from matplotlib.animation import PillowWriter
6

7

8 # Construct potential
9 def construct_potential(xj, xc):

10 return 0.5*(xj-xc)**2
11

12 def calc_ground_state(xj, potential):
13

14 num_grid = xj.size
15 dx = xj[1]-xj[0]
16

17 ham = np.zeros((num_grid , num_grid))
18

19 for i in range(num_grid):
20 for j in range(num_grid):
21 if(i == j):
22 ham[i,j] = -0.5*(-2.0/dx**2)+potential[i]
23 elif(np.abs(i-j)==1):
24 ham[i,j] = -0.5*(1.0/dx**2)
25

26 eigenvalues , eigenvectors = np.linalg.eigh(ham)
27

28 wf = np.zeros(num_grid , dtype=complex)
29

30 wf.real = eigenvectors [:,0]/np.sqrt(dx)
31

32 return wf
33

34 # time propagation parameters
35 Tprop = 40.0
36 dt = 0.005
37 #dt = 0.00905
38 nt = int(Tprop/dt)+1
39

40 # set the coordinate
41 xmin = -10.0
42 xmax = 10.0
43 num_grid = 250
44

45 xj = np.linspace(xmin , xmax , num_grid)
46

47 # set potential
48 xc = 1.0
49 potential = construct_potential(xj , xc)
50

51 # calculate the ground state
52 wf = calc_ground_state(xj, potential)
53

54

55

56 # plot the ground state density , |wf |^2
57 rho = np.abs(wf)**2
58

59 plt.figure(figsize =(8 ,6))
60 plt.plot(xj , rho , label="$|\psi(x)|^2$␣(calc.)")
61 plt.plot(xj , np.exp(-(xj-xc)**2)/np.sqrt(np.pi),
62 label="$|\psi(x)|^2$␣(exact)", linestyle=’dashed ’)
63 plt.plot(xj , 0.5*(xj-xc)**2,
64 label="Harmonic␣potential", linestyle=’dotted ’)
65

66 plt.xlim([-4.0, 4.0])

54

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_td_ham_v1.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_td_ham_v1.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_td_ham_v1.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_td_ham_v1.py

67 plt.ylim ([0.0 , 0.8])
68 plt.xlabel(’x’)
69 plt.ylabel(’Density ,␣Potential ’)
70 plt.legend ()
71 plt.savefig(’gs_density.pdf’)
72 plt.show()

Figure 13 shows the ground-state density obtained by the above code.

4 3 2 1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity
, P

ot
en

tia
l

| (x)|2 (calc.)
| (x)|2 (exact)
Harmonic potential

Figure 13: Variational analysis of the harmonic oscillator

Next, using as the initial condition the ground state obtained by the code above, let us write
Python code to examine the time evolution of the wavefunction. As expressed in Eq. (99),
the time evolution under a time-dependent Hamiltonian can be described by repeatedly applying
the infinitesimal time-evolution operator constructed from the Hamiltonian at each time. By
evaluating this infinitesimal time-evolution operator using a fourth-order Taylor expansion, let us
compute the time evolution of the wavefunction.

ψ(x, tj+1) ≈ exp

[
− i

h̄
∆tH(tj)

]
ψ(x, tj)

≈
4∑

n=0

1

n!

(
−i∆t
h̄

)n

Hn(tj)ψ(x, tj). (107)

The source code 26 below provides an example of Python code to investigate the dynamics of
a quantum wavepacket moving in an oscillating harmonic potential.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_td_ham_v2.py

Source code 26: Example code to obtain the ground state of the harmonic oscillator

1 from numba import jit
2 from matplotlib import pyplot as plt
3 import numpy as np
4 import matplotlib.animation as animation
5 from matplotlib.animation import PillowWriter

55

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_td_ham_v2.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_td_ham_v2.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_td_ham_v2.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_td_ham_v2.py

6

7

8 # Construct potential
9 def construct_potential(xj, xc):

10 return 0.5*(xj-xc)**2
11

12 def calc_ground_state(xj, potential):
13

14 num_grid = xj.size
15 dx = xj[1]-xj[0]
16

17 ham = np.zeros((num_grid , num_grid))
18

19 for i in range(num_grid):
20 for j in range(num_grid):
21 if(i == j):
22 ham[i,j] = -0.5*(-2.0/dx**2)+potential[i]
23 elif(np.abs(i-j)==1):
24 ham[i,j] = -0.5*(1.0/dx**2)
25

26 eigenvalues , eigenvectors = np.linalg.eigh(ham)
27

28 wf = np.zeros(num_grid , dtype=complex)
29

30 wf.real = eigenvectors [:,0]/np.sqrt(dx)
31

32 return wf
33

34 # Operate the Hamiltonian to the wavefunction
35 @jit(nopython=True)
36 def ham_wf(wf , potential , dx):
37

38 n = wf.size
39 hwf = np.zeros(n, dtype=np.complex128)
40

41 for i in range(1,n-1):
42 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
43

44 i = 0
45 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i])/(dx**2)
46 i = n-1
47 hwf[i] = -0.5*(-2.0*wf[i]+wf[i-1])/(dx**2)
48

49 hwf = hwf + potential*wf
50

51 return hwf
52

53

54 # Time propagation from t to t+dt
55 def time_propagation(wf , potential , dx , dt):
56

57 n = wf.size
58 twf = np.zeros(n, dtype=complex)
59 hwf = np.zeros(n, dtype=complex)
60

61 twf = wf
62 zfact = 1.0 + 0j
63 for iexp in range (1,5):
64 zfact = zfact *(-1j*dt)/iexp
65 hwf = ham_wf(twf , potential , dx)
66 wf = wf + zfact*hwf
67 twf = hwf
68

69 return wf
70

71

72 # time propagation parameters
73 #omega = 8.0
74 omega = 0.2
75 Tprop = 80.0
76 dt = 0.005
77 nt = int(Tprop/dt)+1
78

79 # set the coordinate
80 xmin = -10.0
81 xmax = 10.0
82 num_grid = 250
83

84 xj = np.linspace(xmin , xmax , num_grid)
85 dx = xj[1] - xj[0]

56

86

87 # set potential
88 xc = 1.0
89 potential = construct_potential(xj , xc)
90

91 # calculate the ground state
92 wf = calc_ground_state(xj, potential)
93

94

95 # For loop for the time propagation
96 density_list = []
97 xc_list = []
98 for it in range(nt+1):
99 tt = it*dt

100 xc = np.cos(omega*tt)
101 if(it % (nt //200) == 0):
102 rho = np.abs(wf)**2
103 density_list.append(rho.copy())
104 xc_list.append(xc)
105

106

107 potential = construct_potential(xj , xc)
108

109 wf = time_propagation(wf, potential , dx, dt)
110 print(it, nt)
111

112 # plot the density , |wf |^2
113

114 # Define function to update plot for each frame of the animation
115 def update_plot(frame):
116 plt.cla()
117 plt.xlim ([-5.0, 5.0])
118 plt.ylim ([0.0 , 0.8])
119 xc = xc_list[frame]
120 plt.plot(xj, density_list[frame], label="$|\psi(x)|^2$␣(calc.)")
121 plt.plot(xj, np.exp(-(xj-xc)**2)/np.sqrt(np.pi),
122 label="$|\psi(x)|^2$␣(ref.)", linestyle=’dashed ’)
123 plt.plot(xj, 0.5*(xj-xc)**2,
124 label="Harmonic␣potential", linestyle=’dotted ’)
125

126 plt.xlabel(’x’)
127 plt.ylabel(’Density ,␣Potential ’)
128 plt.legend(loc = ’upper␣right’)
129

130

131 # Create the animation
132 fig = plt.figure ()
133 ani = animation.FuncAnimation(fig , update_plot , frames=len(density_list), interval =50)
134 #ani.save(’ wavefunction_animation .gif ’, writer=’ imagemagick ’)
135 ani.save(’density_animation.gif’, writer=’pillow ’)

8.3 Electron dynamics of a one-dimensional hydrogen atom under a
laser electric field

As an application of time-propagation calculations using a time-dependent Hamiltonian, let us
perform a simulation in which a laser electric field is applied to a one-dimensional hydrogen atom
and the dynamics of the driven electron are investigated. As the equation to be solved, we consider
the following one-dimensional time-dependent Schrödinger equation.

ih̄
∂

∂t
ψ(x, t) =

[
Ĥ0 + V̂ (t)

]
ψ(x, t)

=

[
− h̄2

2m

∂2

∂x2
− 1√

x2 + 1
− eE(t)x

]
ψ(x, t). (108)

Here, the potential, −1/
√
x2 + 1, is a one-dimensional potential that mimics the Coulomb poten-

tial, with the divergence at the origin removed to avoid computational difficulties. The potential,
−eE(t)x, is the scalar potential corresponding to a uniform electric field E(t). For convenience, we
define the total Hamiltonian by separating it into the unperturbed part Ĥ0 and the perturbation

57

V̂ (t) as follows.

Ĥ0 = − h̄2

2m

∂2

∂x2
− 1√

x2 + 1
, (109)

V̂ (t) = −eE(t)x. (110)

In the present calculation, at time t = 0 we set the wavefunction ψ(x, t = 0) to be the ground
state of the Hamiltonian in the absence of an electric field (E(t) = 0), and for t > 0 we apply the
following oscillating electric field to compute the electron dynamics.

E(t) =

{
E0 cos

2
[

π
T0

(
t− T0

2

)]
sin

[
ω0

(
t− T0

2

)]
0 < t < T0

0 otherwise
(111)

In practical numerical computation, as in Eq. (99), we evaluate the time evolution of the
wavefunction by repeatedly applying infinitesimal time steps of size ∆t. To facilitate the numerical
implementation, we consider approximating this short-time evolution operator as follows.

exp

[
− i

h̄
H(t0)∆t

]
= exp

[
− i

h̄

(
Ĥ0 + V̂ (t0)

)
∆t

]
= exp

[
− i

h̄
V̂ (t0)

∆t

2

]
exp

[
− i

h̄
Ĥ0∆t

]
exp

[
− i

h̄
V̂ (t0)

∆t

2

]
+O(∆t3). (112)

This approximation can be verified by Taylor expanding each exponential term. Using this ap-
proximation, let us compute the electron dynamics under the electric field given by Equation
(111).

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_hydrogen.py

Source code 27: Example code for calculating electron dynamics under a laser electric field

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as animation
4 from matplotlib.animation import PillowWriter
5

6 # define the potential
7 def calc_potential(xj):
8 vpot = -1.0/np.sqrt(xj **2+1.0)
9 return vpot

10

11

12 def calc_static_hamiltonian(num_grid , xj , vpot):
13

14 ham = np.zeros((num_grid , num_grid))
15 dx = xj[1]-xj[0]
16

17 for i in range(num_grid):
18 for j in range(num_grid):
19 if(i == j):
20 ham[i,j] = -0.5*(-2.0/dx**2)+vpot[i]
21 elif(np.abs(i-j)==1):
22 ham[i,j] = -0.5*(1.0/dx**2)
23

24

25 return ham
26

27

28 def calc_gs_wf(num_grid , ham):
29

30 eigenvalues , eigenvectors = np.linalg.eigh(ham)
31 print("gs␣energy␣=", eigenvalues [0])
32

33 wf = np.zeros(num_grid , dtype=complex)
34 wf.real = eigenvectors [:,0]

58

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen.py

35 wf[0] = 0.0
36 wf[-1] = 0.0
37

38 return wf
39

40

41 def calc_laser_field(tt):
42

43 omega0 = 0.05
44 E0 = 0.1
45 tpulse = 10*2.0* np.pi/omega0
46 xx = tt -0.5* tpulse
47

48 if(np.abs(xx)/tpulse < 0.5):
49 Et = E0*np.cos(np.pi*xx/tpulse)**2*np.sin(omega0*xx)
50 else:
51 Et = 0.0
52

53 return Et
54

55

56

57 def ham_wf(wf , vpot , dx):
58

59 num_grid = wf.size
60 hwf = np.zeros(num_grid , dtype=complex)
61

62 for i in range(1, num_grid -1):
63 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
64

65 hwf = hwf + vpot*wf
66 return hwf
67

68

69 def time_propagation(xj , wf, vpot , dx , tt, dt):
70

71 Et = calc_laser_field(tt)
72 v_Et = -Et*xj
73

74 # apply exp (-0.5*0j*v_Et*dt)
75 wf = wf*np.exp (-0.5*1j*v_Et*dt)
76

77 # propagate
78 twf = wf
79

80

81 zfact = 1.0 + 0j
82 for iexp in range (1,5):
83 zfact = zfact *(-1j*dt)/iexp
84 hwf = ham_wf(twf , vpot , dx)
85 wf = wf + zfact*hwf
86 twf = hwf
87

88

89 # apply exp (-0.5*0j*v_Et*dt)
90 wf = wf*np.exp (-0.5*1j*v_Et*dt)
91

92 return wf
93

94 def calc_dipole(xj , wf):
95

96 dx = xj[1]-xj[0]
97 dipole = np.sum(np.abs(wf)**2*xj)*dx
98

99 return dipole
100

101

102 # Set the coordinate
103 xmin = -50.0
104 xmax = 50.0
105 num_grid = 500
106

107 xj = np.linspace(xmin , xmax , num_grid)
108 dx = xj[1]-xj[0]
109

110 # Time propagation parameters
111 Tprop = 1300.0 #80.0
112 dt = 0.05
113 nt = int(Tprop/dt)+1
114

59

115

116

117

118 # set the potential
119 vpot = calc_potential(xj)
120

121 # set the static Hamiltonian
122 ham = calc_static_hamiltonian(num_grid , xj, vpot)
123

124 # set the initial wavefunction (ground state)
125 wf = calc_gs_wf(num_grid , ham)
126

127 # set output quantities
128 tt_out = np.zeros(nt)
129 Et_out = np.zeros(nt)
130 dipole_out = np.zeros(nt)
131 norm_out = np.zeros(nt)
132

133 # wavefunction array to make a movie
134 wavefunctions = []
135

136 # For loop for the time propagation
137 for it in range(nt):
138 if(it%(nt //100) == 0):
139 print("it=",it ,nt)
140 wavefunctions.append(wf.copy())
141

142 tt = dt*it
143

144 # compute outputs
145 tt_out[it] = dt*it
146 Et_out[it] = calc_laser_field(tt)
147 dipole_out[it] = calc_dipole(xj, wf)
148 norm_out[it] = np.sum(np.abs(wf)**2)*dx
149

150 wf = time_propagation(xj, wf, vpot , dx, tt, dt)
151

152

153 plt.figure ()
154 plt.plot(tt_out , Et_out , label="E(t)")
155 plt.plot(tt_out , dipole_out , label="d(t)")
156

157 plt.xlabel("t")
158 plt.ylabel("E(t),␣d(t)")
159 plt.legend ()
160

161 plt.savefig("dipole_t.png")
162

163

164 # Define function to update plot for each frame of the animation
165 def update_plot(frame):
166 plt.cla()
167 plt.xlim([-20, 20])
168 plt.ylim ([0.0 , 0.12])
169 plt.plot(xj, np.abs(wavefunctions[frame])**2, label="Density")
170 plt.xlabel(’x’)
171 plt.ylabel(’$Density$ ’)
172 plt.legend ()
173

174 # Create the animation
175 fig = plt.figure ()
176 ani = animation.FuncAnimation(fig , update_plot , frames=len(wavefunctions), interval =50)
177 #ani.save(’ wavefunction_animation .gif ’, writer=’ imagemagick ’)
178 ani.save(’density_animation.gif’, writer=’pillow ’)

8.4 Absorbing Potential

In the calculation of the previous section, an unphysical phenomenon occurs in which electrons
ionized from the atom are reflected at the boundaries of the simulation box. Therefore, to absorb
electrons ionized by the laser field, we consider introducing a purely imaginary potential. Let us
consider the following complex potential, and impose absorbing boundary conditions such that

60

the norm of the ionized electrons decreases with time.

V̂ (t) =

{
−eE(t)x |x| < 40

−eE(t)x− i (|x| − 40) |x| < 40
(113)

By adding this absorbing potential as a perturbation, the ionized electrons are absorbed by
the potential, and the influence of unphysical reflections at the simulation-box boundary can
be mitigated. In practice, let us run a calculation with the absorbing potential introduced and
examine its effect.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_hydrogen_abs.py

Source code 28: Example code for electron dynamics calculation under a laser field

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as animation
4 from matplotlib.animation import PillowWriter
5

6 # define the potential
7 def calc_potential(xj):
8 vpot = -1.0/np.sqrt(xj **2+1.0)
9 return vpot

10

11

12 def calc_static_hamiltonian(num_grid , xj , vpot):
13

14 ham = np.zeros((num_grid , num_grid))
15 dx = xj[1]-xj[0]
16

17 for i in range(num_grid):
18 for j in range(num_grid):
19 if(i == j):
20 ham[i,j] = -0.5*(-2.0/dx**2)+vpot[i]
21 elif(np.abs(i-j)==1):
22 ham[i,j] = -0.5*(1.0/dx**2)
23

24

25 return ham
26

27

28 def calc_gs_wf(num_grid , ham):
29

30 eigenvalues , eigenvectors = np.linalg.eigh(ham)
31 print("gs␣energy␣=", eigenvalues [0])
32

33 wf = np.zeros(num_grid , dtype=complex)
34 wf.real = eigenvectors [:,0]
35 wf[0] = 0.0
36 wf[-1] = 0.0
37

38 return wf
39

40

41 def calc_laser_field(tt):
42

43 omega0 = 0.05
44 E0 = 0.1
45 tpulse = 10*2.0* np.pi/omega0
46 xx = tt -0.5* tpulse
47

48 if(np.abs(xx)/tpulse < 0.5):
49 Et = E0*np.cos(np.pi*xx/tpulse)**2*np.sin(omega0*xx)
50 else:
51 Et = 0.0
52

53 return Et
54

55

56

57 def ham_wf(wf , vpot , dx):
58

59 num_grid = wf.size

61

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen_abs.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen_abs.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen_abs.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen_abs.py

60 hwf = np.zeros(num_grid , dtype=complex)
61

62 for i in range(1, num_grid -1):
63 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
64

65 hwf = hwf + vpot*wf
66 return hwf
67

68

69 def time_propagation(xj , wf, vpot , dx , tt, dt):
70

71 num_grid = xj.size
72

73 Et = calc_laser_field(tt)
74 v_Et = -Et*xj
75

76 # set absorbing boundary
77 v_abs = np.zeros(num_grid , dtype=complex)
78 for i in range(num_grid):
79 if(np.abs(xj[i]) > 40.0):
80 v_abs[i] = -0.2*1j*(np.abs(xj[i]) - 40.0)
81

82

83

84 # apply exp (-0.5*0j*v_Et*dt)
85 wf = wf*np.exp (-0.5*1j*(v_Et+v_abs)*dt)
86

87 # propagate
88 twf = wf
89

90

91 zfact = 1.0 + 0j
92 for iexp in range (1,5):
93 zfact = zfact *(-1j*dt)/iexp
94 hwf = ham_wf(twf , vpot , dx)
95 wf = wf + zfact*hwf
96 twf = hwf
97

98

99 # apply exp (-0.5*0j*v_Et*dt)
100 wf = wf*np.exp (-0.5*1j*(v_Et+v_abs)*dt)
101

102 return wf
103

104 def calc_dipole(xj , wf):
105

106 dx = xj[1]-xj[0]
107 dipole = np.sum(np.abs(wf)**2*xj)*dx
108

109 return dipole
110

111

112 # Set the coordinate
113 xmin = -50.0
114 xmax = 50.0
115 num_grid = 500
116

117 xj = np.linspace(xmin , xmax , num_grid)
118 dx = xj[1]-xj[0]
119

120 # Time propagation parameters
121 Tprop = 1300.0 #80.0
122 dt = 0.05
123 nt = int(Tprop/dt)+1
124

125

126

127

128 # set the potential
129 vpot = calc_potential(xj)
130

131 # set the static Hamiltonian
132 ham = calc_static_hamiltonian(num_grid , xj, vpot)
133

134 # set the initial wavefunction (ground state)
135 wf = calc_gs_wf(num_grid , ham)
136

137 # set output quantities
138 tt_out = np.zeros(nt)
139 Et_out = np.zeros(nt)

62

140 dipole_out = np.zeros(nt)
141 norm_out = np.zeros(nt)
142

143 # wavefunction array to make a movie
144 wavefunctions = []
145

146 # For loop for the time propagation
147 for it in range(nt):
148 if(it%(nt //100) == 0):
149 print("it=",it ,nt)
150 wavefunctions.append(wf.copy())
151

152 tt = dt*it
153

154 # compute outputs
155 tt_out[it] = dt*it
156 Et_out[it] = calc_laser_field(tt)
157 dipole_out[it] = calc_dipole(xj, wf)
158 norm_out[it] = np.sum(np.abs(wf)**2)*dx
159

160 wf = time_propagation(xj, wf, vpot , dx, tt, dt)
161

162

163 plt.figure ()
164 plt.plot(tt_out , Et_out , label="E(t)")
165 plt.plot(tt_out , dipole_out , label="d(t)")
166

167 plt.xlabel("t")
168 plt.ylabel("E(t),␣d(t)")
169 plt.legend ()
170

171 plt.savefig("dipole_t_abs.png")
172

173

174 # Define function to update plot for each frame of the animation
175 def update_plot(frame):
176 plt.cla()
177 plt.xlim([-20, 20])
178 plt.ylim ([0.0 , 0.12])
179 plt.plot(xj, np.abs(wavefunctions[frame])**2, label="Density")
180 plt.xlabel(’x’)
181 plt.ylabel(’$Density$ ’)
182 plt.legend ()
183

184 # Create the animation
185 fig = plt.figure ()
186 ani = animation.FuncAnimation(fig , update_plot , frames=len(wavefunctions), interval =50)
187 #ani.save(’ wavefunction_animation .gif ’, writer=’ imagemagick ’)
188 ani.save(’density_animation_abs.gif’, writer=’pillow ’)

8.5 Analysis of High-Order Harmonic Generation

In the above simulation, we investigated the electron dynamics driven when a high-intensity laser
pulse is irradiated onto an atom. As a result of that analysis, we can compute the electric dipole
moment d(t) induced by the optical field (in this case equivalent to the expectation value of
position) as a function of time. Moreover, since a charged particle radiates electromagnetic waves
when undergoing accelerated motion, by examining the frequency components of the acceleration
of the charged particle, we can calculate the spectrum of the light emitted from the optically
driven electronic system. Specifically, it is convenient to examine the Fourier transform of the
dipole moment as follows.

d̃(ω) =

∫ ∞

−∞
dteiωtd(t). (114)

Here, noting that the electron acceleration a(t) is proportional to the second time derivative of
the dipole moment, the spectrum of the light emitted from the optically driven electronic system
is expressed as follows.

I(ω) ∼ ω2
∣∣∣d̃(ω)∣∣∣2 . (115)

63

Since, in an actual simulation, we cannot treat infinitely long times, we will perform the Fourier
transform over a finite time interval instead of Eq. (114).

d̃(ω) =

∫ Tsim

0

dteiωtd(t)W (t). (116)

Here, Tsim is the simulation time, and the function W (t) is a window function that smoothly goes
to zero at t = Tsim. By introducing such a window function, we can reduce the noise that appears
in the Fourier transform over a finite time.

Append the analysis code using the Fourier transform described above to the end of the electron
dynamics calculation created up to the previous section, and actually compute the spectrum of
the light generated from the optically excited atom.

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_

dynamics_hydrogen_abs_fft.py

Source code 29: Example code for electron dynamics under a laser field and analysis of high-order
harmonic spectra

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.animation as animation
4 from matplotlib.animation import PillowWriter
5

6 # define the potential
7 def calc_potential(xj):
8 vpot = -1.0/np.sqrt(xj **2+1.0)
9 return vpot

10

11

12 def calc_static_hamiltonian(num_grid , xj , vpot):
13

14 ham = np.zeros((num_grid , num_grid))
15 dx = xj[1]-xj[0]
16

17 for i in range(num_grid):
18 for j in range(num_grid):
19 if(i == j):
20 ham[i,j] = -0.5*(-2.0/dx**2)+vpot[i]
21 elif(np.abs(i-j)==1):
22 ham[i,j] = -0.5*(1.0/dx**2)
23

24

25 return ham
26

27

28 def calc_gs_wf(num_grid , ham):
29

30 eigenvalues , eigenvectors = np.linalg.eigh(ham)
31 print("gs␣energy␣=", eigenvalues [0])
32

33 wf = np.zeros(num_grid , dtype=complex)
34 wf.real = eigenvectors [:,0]
35 wf[0] = 0.0
36 wf[-1] = 0.0
37

38 return wf
39

40

41 def calc_laser_field(tt):
42

43 omega0 = 0.05
44 E0 = 0.1
45 tpulse = 10*2.0* np.pi/omega0
46 xx = tt -0.5* tpulse
47

48 if(np.abs(xx)/tpulse < 0.5):
49 Et = E0*np.cos(np.pi*xx/tpulse)**2*np.sin(omega0*xx)
50 else:
51 Et = 0.0
52

53 return Et

64

https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen_abs_fft.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen_abs_fft.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen_abs_fft.py
https://github.com/shunsuke-sato/python_qe/blob/develop/note_comp_phys/src/qm_dynamics_hydrogen_abs_fft.py

54

55

56

57 def ham_wf(wf , vpot , dx):
58

59 num_grid = wf.size
60 hwf = np.zeros(num_grid , dtype=complex)
61

62 for i in range(1, num_grid -1):
63 hwf[i] = -0.5*(wf[i+1] -2.0*wf[i]+wf[i-1])/(dx**2)
64

65 hwf = hwf + vpot*wf
66 return hwf
67

68

69 def time_propagation(xj , wf, vpot , dx , tt, dt):
70

71 num_grid = xj.size
72

73 Et = calc_laser_field(tt)
74 v_Et = -Et*xj
75

76 # set absorbing boundary
77 v_abs = np.zeros(num_grid , dtype=complex)
78 for i in range(num_grid):
79 if(np.abs(xj[i]) > 40.0):
80 v_abs[i] = -0.2*1j*(np.abs(xj[i]) - 40.0)
81

82

83

84 # apply exp (-0.5*0j*v_Et*dt)
85 wf = wf*np.exp (-0.5*1j*(v_Et+v_abs)*dt)
86

87 # propagate
88 twf = wf
89

90

91 zfact = 1.0 + 0j
92 for iexp in range (1,5):
93 zfact = zfact *(-1j*dt)/iexp
94 hwf = ham_wf(twf , vpot , dx)
95 wf = wf + zfact*hwf
96 twf = hwf
97

98

99 # apply exp (-0.5*0j*v_Et*dt)
100 wf = wf*np.exp (-0.5*1j*(v_Et+v_abs)*dt)
101

102 return wf
103

104 def calc_dipole(xj , wf):
105

106 dx = xj[1]-xj[0]
107 dipole = np.sum(np.abs(wf)**2*xj)*dx
108

109 return dipole
110

111

112 # Set the coordinate
113 xmin = -50.0
114 xmax = 50.0
115 num_grid = 500
116

117 xj = np.linspace(xmin , xmax , num_grid)
118 dx = xj[1]-xj[0]
119

120 # Time propagation parameters
121 Tprop = 1300.0 #80.0
122 dt = 0.05
123 nt = int(Tprop/dt)+1
124

125

126

127

128 # set the potential
129 vpot = calc_potential(xj)
130

131 # set the static Hamiltonian
132 ham = calc_static_hamiltonian(num_grid , xj, vpot)
133

65

134 # set the initial wavefunction (ground state)
135 wf = calc_gs_wf(num_grid , ham)
136

137 # set output quantities
138 tt_out = np.zeros(nt)
139 Et_out = np.zeros(nt)
140 dipole_out = np.zeros(nt)
141 norm_out = np.zeros(nt)
142

143 # wavefunction array to make a movie
144 wavefunctions = []
145

146 # For loop for the time propagation
147 for it in range(nt):
148 if(it%(nt //100) == 0):
149 print("it=",it ,nt)
150 wavefunctions.append(wf.copy())
151

152 tt = dt*it
153

154 # compute outputs
155 tt_out[it] = dt*it
156 Et_out[it] = calc_laser_field(tt)
157 dipole_out[it] = calc_dipole(xj, wf)
158 norm_out[it] = np.sum(np.abs(wf)**2)*dx
159

160 wf = time_propagation(xj, wf, vpot , dx, tt, dt)
161

162

163 plt.figure ()
164 plt.plot(tt_out , Et_out , label="E(t)")
165 plt.plot(tt_out , dipole_out , label="d(t)")
166

167 plt.xlabel("t")
168 plt.ylabel("E(t),␣d(t)")
169 plt.legend ()
170

171 plt.savefig("dipole_t_abs.png")
172

173

174 # Define function to update plot for each frame of the animation
175 def update_plot(frame):
176 plt.cla()
177 plt.xlim([-20, 20])
178 plt.ylim ([0.0 , 0.12])
179 plt.plot(xj, np.abs(wavefunctions[frame])**2, label="Density")
180 plt.xlabel(’x’)
181 plt.ylabel(’$Density$ ’)
182 plt.legend ()
183

184 # Create the animation
185 fig = plt.figure ()
186 ani = animation.FuncAnimation(fig , update_plot , frames=len(wavefunctions), interval =50)
187 #ani.save(’ wavefunction_animation .gif ’, writer=’ imagemagick ’)
188 ani.save(’density_animation_abs.gif’, writer=’pillow ’)
189

190

191 ### Analysis of HHG ###
192 def apply_envelope(nt, dt, ft):
193

194 omega0 = 0.05
195 tpulse = 10*2.0* np.pi/omega0
196 ft_env = np.zeros(nt)
197

198 for it in range(nt):
199 tt = it*dt
200 xx = tt -0.5* tpulse
201 if(np.abs(xx)/tpulse < 0.5):
202 ft_env[it] = ft[it]*np.cos(np.pi*xx/tpulse)**2
203 return ft_env
204

205 # Apply envelope function
206 Et_env = apply_envelope(nt, dt , Et_out)
207 dipole_env = apply_envelope(nt , dt , dipole_out)
208

209 # Apply Fourier transform
210 Ew_out = np.fft.fft(Et_env)
211 spec_Ew = np.abs(Ew_out)**2
212

213 dipole_w_out = np.fft.fft(dipole_env)

66

214 spec_dipole = np.abs(dipole_w_out)**2
215

216 # Compute the frequency
217 omega = np.fft.fftfreq(nt , d=dt)*(2.0* np.pi)
218

219

220 # Figure 1
221 plt.figure ()
222 plt.plot(omega , omega **2* spec_Ew , label="$E(\ omega)$")
223 plt.plot(omega , omega **2* spec_dipole , label="$d(\omega)$")
224

225 plt.xlabel("ω")
226 plt.ylabel("$|E(\omega)|^2$,␣$|d(\omega)|^2$")
227

228 plt.xlim (0,6)
229 plt.ylim(1e-10,1e4)
230 plt.yscale("log")
231 plt.legend ()
232 plt.savefig("hhg_spec_1.png")
233

234 # Figure 2
235 omega0 = 0.05
236 plt.figure ()
237 plt.plot(omega/omega0 , omega **2* spec_Ew , label="$E(\omega)$")
238 plt.plot(omega/omega0 , omega **2* spec_dipole , label="$d(\ omega)$")
239

240 plt.xlabel("$\omega␣/␣\omega_0$")
241 plt.ylabel("$|E(\omega)|^2$,␣$|d(\omega)|^2$")
242

243 plt.xticks(np.arange (1,22,2))
244 plt.xlim (0 ,22)
245 plt.ylim(1e-10,1e4)
246 plt.yscale("log")
247 plt.grid(axis=’x’)
248 plt.legend ()
249

250 plt.savefig("hhg_spec_2.png")

In high-order harmonic generation that arises when a high-intensity laser such as the one
above is irradiated onto an atom, it is known that when the energy of the emitted light exceeds
a certain threshold, the intensity drops sharply. This energy is called the cutoff energy, and at
the time when high-order harmonic generation was first observed, the mechanism that determines
this cutoff energy was a major mystery. Subsequently, Paul Corkum proposed a semiclassical
three-step model and clarified that the cutoff energy is given by the following expression.

Ucutoff = Ip + 3.17Up. (117)

Here, Ip is the ionization potential, and Up is a quantity called the ponderomotive energy, repre-
senting the average kinetic energy of a charged particle in an oscillating electric field. Up is defined
by the following formula.

Up =
e2E2

0

4meω2
0

. (118)

To understand this equation, let us consider Newton’s equation for an electron in an oscillating
electric field.

me
d

dt
v(t) = −eE0 cos(ω0t). (119)

Therefore, the electron velocity under an oscillating field is given by

v(t) = − e

me
E0 sin(ω0t). (120)

The time average of the kinetic energy (the average over one period T of the field oscillation) is
then given by

< Ek >=
me

2

1

T

∫ T

0

dtv2(t) =
me

2

1

T

∫ T

0

dt
e2

m2
e

E2
0 sin

2(ω0t) =
E2

0

4meω2
0

= Up. (121)

67

In the above simulations, we set E0 = 0.1, ω0 = 0.05, and e = me = 1, and the ionization
potential of the model atom is Ip = 0.67. Therefore, the value of the cutoff energy predicted by
the three-step model is Ucutoff = Ip+3.17Up ≈ 3.84. Let us compare this value with the spectrum
obtained in the calculation above.

68

	Getting Familiar with Python
	Running Python
	Variable Types in Python
	Basic Mathematical Operations in Python

	Numerical Differentiation
	Finite Difference Approximation and Forward Difference
	Central Difference Formula and Accuracy of Finite Difference Approximation
	Numerical Differentiation of the Second Derivative

	Numerical Integration
	Trapezoidal Rule

	Solution of First-Order Ordinary Differential Equations
	Euler Method
	Solution by Heun Method
	Solution by the Runge-–Kutta Method

	Solving Second-Order Ordinary Differential Equations
	Quantum Dynamics Simulation in One Dimension
	Real-Space Method
	Real-time method
	Speeding up Python code with Numba

	Creating a movie of one-dimensional quantum wave packet dynamics
	Various Dynamics of One-Dimensional Quantum Wave Packets
	Tunneling Phenomenon
	Coherent State in a Harmonic Potential
	Anharmonic Potential
	Harmonic Potential: Expectation Values of Position and Momentum, and Ehrenfest's Theorem

	Ground State and Excited State Calculations of One-Dimensional Quantum Systems
	Review of Linear Algebra
	Proof that the Eigenvalues of a Hermitian Matrix are Real
	Proof that eigenvectors corresponding to distinct eigenvalues of a Hermitian matrix are orthogonal
	On the orthogonality of eigenvectors corresponding to equal eigenvalues of a Hermitian matrix (the case of degenerate eigenvalues)
	A brief summary of properties of eigenvalues and eigenvectors of Hermitian matrices

	Numerical computation of the diagonalization of a real symmetric matrix
	Solving the Time-Independent Schrödinger Equation Using the Real-Space Finite Difference Method
	Infinite Square Well Potential Problem
	Ground and Excited States of the 1D Harmonic Oscillator

	Quantum Dynamics under a Time-Dependent Hamiltonian
	Time Evolution under a Time-Dependent Hamiltonian
	Dynamics of a Quantum Wavepacket in an Oscillating Harmonic Potential
	Electron dynamics of a one-dimensional hydrogen atom under a laser electric field
	Absorbing Potential
	Analysis of High-Order Harmonic Generation

